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MOSFET Switching
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Diode Modeling
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e Diode status is passively determined by the condition of application circuits.




Diode Switching

1D

¢ \Voltage-controlled switching
A diode turns on when the circuit imposesa positive voltage v, across it.
Otherwise, it turns off.

e Current-controlled switching
A diode turns on when the circuit imposesa positive current i, through it.
Otherwise, it turns off.




Examples of Diode Switching

Voltage-controlled switching Current-controlled switching
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MOSFET-Diode Pair as SPDT Switch
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Definition of Inductance
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e Electro-magnetic process in inductor
ir(t) — H({t) — B(t)=pH(l) — ¢t)=5B(t) — Ai)=ne(t)
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e Definition of inductance




Faraday’s Law and Circuit Equation of Inductor
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e Faraday's law: time-varying magnetic flux induces a voltage across the inductor



Circuit Equations of Inductor
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e Special cases

With vy () = Vg,




Inductance of Toroidal Inductor

A(t)
i (t)

e Inductance: L =

e Ampere's law

w.,. : relative permeability
1, :permeability of free space




Voltage Drive of Inductor
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Inductive Switching Circuit #1
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e Instantaneous release of the magnetic energy of
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Inductive Switching Circuit #2
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e When the active switch is opened, the diode is turned-on because the current-carrying

inductor behaves as a current source.




Saturation of Inductor

A
O -0
) O>
irt) om0 [T
—)——‘ Yyyw |
|
|
|
Lo
'L crit ' )
T 1 11,
|
|
|
|
|
|
|
___________ )\sat
<O <O
<O

e Magnetic saturation
When the current reaches the critical value, all the magnetic dipoles line up
in parallel with the magnetic field and the magnetic flux saturates at its
maximum value.

e Consequential effect of magnetic saturation
Upon the magnetic saturation, the inductance becomes zero thereby causing
a fatal failure of the circuit operation.




Saturation of Inductor
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e \When the current increase to LT, crits




Flux Balance Condition

e Flux balance condition: the flux increase in one switching period should be equal
to the flux decrease in that switching period.

A
i
in order to avoid the flux
walking towards saturation
e Faraday's law: v (t) = % =
_|_
UL



Volt-Sec Balance Condition

e Excitation of inductor with arectangular voltage waveform

Vi
* A(t) = f v (t)dt ) T —
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Volt-sec balance condition

e The average value of the inductor voltage is considered to be zero assuming
that the averaging is performed over a sufficiently longer period than the
switching period.




Implications of Volt-Sec Balance Condition

e \Whenever possible, a switching circuit establishes a steady-state equilibrium by
adjusting the circuit variables to satisfy the volt-sec balance condition on the

inductors in the circuit.

e A circuit that violates the volt-sec balance condition can be easily devised, but
the circuit eventually destroys itself by an over-current condition that triggers the

inductor saturation.
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Freewheeling Path for Inductor Current

o L

e When the on-time inductor current path is discontinued, the freewheeling
path provides an alternative path for the inductor current.

e The freewheeling path is usually constructed with a diode, called the
freewheeling diode.




Inductive Switching Circuit #3

e Case #1

vr,(t)

Closed
< T >
A
B




Inductive Switching Circuit #3
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Definition of Capacitance

Y
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¢ Definition of capacitance:

e Definition of current;

e Circuit equation of capacitance



Circuit Equations for Capacitors
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e Basic equations

io(t)=C T

e Special cases
With i(t) = I g,

With vy (t) = Vg,




Current Drive of Capacitor
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e Current drive: excitation of capacitor with a current source

ic(t) ic(t)
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Capacitive Switching Circuit #1
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Capacitive Switching Circuit #2

Closed

Open
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¢ Isolation diode blocks the capacitor voltage when the switch is closed.



Charge Balance Condition

e Charge balance condition: the charge increase in one switching period should be
equal to the charge decrease in that switching period.

e Excitation of capacitor with a rectangular current waveform

ic(t)
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Amp-sec balance condition

e The average value of the capacitor current can be considered to be zero
assuming that the averaging is performed over a sufficiently longer period than
the switching period.




Implications of Amp-Sec Balance Condition

e \Whenever possible, a switching circuit establishes a steady-state equilibrium by
adjusting the circuit variables to satisfy the amp-sec balance condition on the
capacitors in the circuit.

e A circuit that violates the amp-sec balance condition can be easily devised, but
the circuit eventually destroys itself by an over-voltage condition on the capacitor.
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Capacitive Switching Circuit #3

e Case #1:
Switch open Closed
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Capacitive Switching Circuit #3
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|deal Transformer

vp

e Definition of circuit variables
vp(t): primary voltage
v¢(t): secondary voltage

e Definition of circuit equation

vs

ip(t): primary current
ig(t): secondary current
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e Examples

Circuit Equations of Ideal Transformer
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Practical Transformer

Structure and dot convention Symbol and polarity

e Dot convention: the primary and secondary currents flowing into the winding
terminals marked e produce a mutually additive magnetic
flux.

® Lenz's law: an electro-magnetic induction occurs in such a way that the
magnetic flux produced as the outcome of the magnetic induction
opposes the magnetic flux that initiated the induction process.




Modeling of Practical Transformer

¢, : magnetic flux inside the core

1) Faraday's law



Modeling of Practical Transformer

H . : magnetic field intensity inside the core

l,, - mean magnetic path length

2) Ampere’s law

Magnetizing current ¢ _ (%) : the current required to create /7 () that
couples the primary and secondary windings

through magnetic induction. .
37
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Modeling of Practical Transformer

3) Magnetizing inductance

Magnetizing current through primary winding

Magnetic flux linkage at primary winding

Magnetizing inductance L, , associated with i _ (t) and Ap(?)
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Circuit Model of Practical Transformer

4) Circuit model
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Summary of Transformer Modeling

e Circuit model

Voltage equation

Current equation

When p,. is assumed infinite, L, becomes infinitelylarge and the circuit
model reduces to the ideal transformer.




Example of Transformer Circuit

UPC_D Np Ng g vg
v

+2V FO5A
< > -2V ZS: > —05A
5ms 5ms
) 10ms j ) 10ms i
e Transformer parameters
=47 x10~lem N p=10 Ng=20

p, =5x103  S=1lcm? [

i e Circuit parameters




Example of Transformer Circuit

e Circuit waveforms
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Solenoid Drive Circuit

e Solenoid: an inductor fabricated by winding copper coil around an iron core

e Conceptual (faulty) solenoid drive circuit

i, Closed
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e Solenoid drive circuit must be designed so that the remnant energy is safely
removed from the solenoid inductance.




Dissipative Solenoid Drive Circuit

Closed Closed
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Dissipative Solenoid Drive Circuit

Closed Closed
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Example of Dissipative Solenoid Drive Circuit
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Non-Dissipative Solenoid Drive Circuit

D L -
i,

|||—o\o—
f
A G (03
sJE
=z

I—o o—
I—o




Non-Dissipative Solenoid Drive Circuit
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Example of Non-Dissipative Solenoid Drive Circuit
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Capacitor Charging Circuit

e Circuit configuration

e Operation example
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Capacitor Charging Circuit




Capacitor Charging Circuit
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Capacitor Charging Circuit
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Circuit Waveforms

-

I: energy build-up
II: energy transfer
lll: recess period

e The magnetizingcurrent : increases linearly during the energy build-up period,
but it decays in a nonlinear fashion in the energy transfer period.

e Duration of the energy transfer period sucessively diminishes as the operational
cycles proceeds.

e The incremental increase inthe capacitor voltage v, becomes smaller as the
operational cycle proceeds.




Example of Capacitor Charging Circuit
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Example of Capacitor Charging Circuit
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e Energy balance condition

e Total time required for charging V-
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