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In the last chapter, we studied the design and analysis method for converters intended
for general dc power conversion applications. A converter powered from an ideal
voltage source and loaded with a current sink was defined as an uncoupled converter.
The uncoupled converter allows us to conceptually separate an individual converter
from the system. This permits us to execute the control design without any prior
knowledge about the source and load subsystems. Later, we revealed that uncoupled
converters can be designed using the conventional design procedures, originally
intended for the resistive case.
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2 Chapter 1 Load-Coupled Converters and Loading Effects

fL

fC

cfR

LZ

Power stage
     and
PWM block

Si

Sv

lfR

( )vF s
iCZ

Figure 1.1 Load subsystem as combination of filter stage and converter.

We employed Middlebrook’s extra element theorem (EET) to develop general
analysis methodologies for the converters coupled with a non-ideal source or practical
load. Considering the source and load impedances as the extra elements, we applied
the EET to express the performance of the coupled converters as combinations of the
transfer functions of the uncoupled converter and impedances of the extra elements.
The outcomes of this analysis are summarized in Tables ?? and ??. We now step
through the detailed dynamic analysis of the coupled converters.

The converter coupled with a general load subsystem, yet still powered from
an ideal voltage source, was denoted as the load-coupled converter. Load-coupled
converters usually encounter certain changes in their performance. Influences of the
load subsystem are called the loading effects. Illuminations of the loading effects
were given in Example ?? in the previous chapter. The current section investigates
the origins, dynamics, and consequences of the loading effects.

We first study the input impedance of load subsystems, which is referred to as
the load impedance. Then, we examine the impacts of the load impedance, or the
loading effects, on stability and other performance of load-coupled converters. In
particular, the impacts of the load impedance on the loop gain and input impedance
of the upstream converter are analyzed in detail. This chapter provides the sufficient
knowledge to predict and comprehend the converter performance under the strong
loading effects.

1.1 LOAD SUBSYSTEM AND LOAD IMPEDANCE

The load subsystem is commonly identified as a combination of filter stages and other
converters. Figure 1.1 shows a simple load subsystem, configured with a single-stage
filter and a closed-loop controlled converter. This load subsystem will couple with
a converter upstream and affect the dynamics of the load-coupled converter. As
the prerequisite for the study of load-coupled converters, we first evaluate the input
impedance of the load subsystem, namely the load impedance ZL(s).

The load impedance ZL(s) is a complex quantity due to the presence of the
converter stage. An exact evaluation of ZL(s) through conventional circuit analyses
soon becomes intractable. Here, we use the EET and graphical method to make the
analysis manageable and practical. Although the analysis procedures are lengthy,
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Figure 1.2 Load impedance evaluation. (a) Load subsystem. (b) Circuit model. (c)
Asymptotic plots for ZL.

the results are rather simple. We first present the final results and later discuss the
analytical details.

1.1.1 Results of Load Impedance Analysis

The load impedance ZL(s) is a cascaded connection of the filter impedance and the
input impedance of the regulated converter, ZiC(s) in Fig. 1.1. The converter input
impedance of a regulated converter,ZiC(s), behaves as a negative resistance up to the
converter’s loop gain crossover frequency. Thus, the regulated converter is replaced
with a single negative resistance for the load impedance evaluation. Figures 1.2(a)
and 1.2(b) illustrate this concept. The input impedance of the regulated converter,
ZiC(s) in Fig. 1.2(a), is replaced with the negative resistance, −RiC in Fig. 1.2(b).
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The value of the negative resistance is given by †

−RiC = −VS
IS

(1.1)

where VS is the dc voltage across the input port of the load subsystem and IS is
the dc current flowing into the load subsystem. The negative resistance −RiC is an
approximation of the input impedance of the regulated converter. The validity of this
approximation will be shown later. From Fig. 1.2(b), the load impedance ZL(s) is
evaluated as

ZL(s) = sLf +Rlf +

(
Rcf +

1

sCf

)
‖ (−RiC)

= −RiC

1 +
s

Qωo
+
s2

ω2
o

1 +
s

ωp

(1.2)

where

ωo =

√
Rlf −RiC

Rcf −RiC

1

LfCf
≈ 1√

LfCf

(1.3)

Q =
1

ωo

Rlf −RiC

Lf + Cf

(
RlfRcf −RiC(Rlf +Rcf )

) ≈ 1

Rlf +Rcf

√
Lf

Cf
(1.4)

ωp =
1

Cf (Rcf −RiC)
≈ − 1

CfRiC
(1.5)

with the assumptions of RiC � Rcf , RiC � Rlf , and Cf (Rlf +Rcf )� Lf/RiC .
The ωp in (1.5) is a right-half plane (RHP) pole ‡, which boosts 6 ZL by 90◦ while
bringing down |ZL| by−20 dB/dec slope. The asymptotic plots of ZL(s) are drawn
in Fig. 1.2(c). The |ZL| follows the low-frequency asymptote of RiC before rolling
down with a −20 dB/dec slope at ωp. At high frequencies, |ZL| increases with a
20 dB/dec slope. The 6 ZL starts from −180◦ at low frequencies, passes −135◦ at
ωp, and finally settles at 90◦ at high frequencies.

Although a simple load subsystem is used, the preceding analysis reveals the
common characteristics of general load subsystems, consisting of filter stages and
converters. The load impedance behaves as a negative resistance at low frequencies,

†It can be shown that the expression (1.1) is equivalent to the previous equation of (??), under assumption
that the converter operates without power loss.
‡The RHP pole inZL(s) does not indicate that the load subsystem is unstable. For stability assessment, the
input admittance YL(s) should be considered rather than the input impedance ZL(s), because YL(s) =
ı̂s(s)/v̂s(s) is the transfer function that relates the input variable of the load subsystem, v̂s(s), to the
output variable, ı̂s(s). The RHP pole in ZL(s) becomes an RHP zero in YL(s).
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1.1 Load Subsystem and Load Impedance 5

exhibits a transitional dipping at mid-frequency band, and increases linearly at high
frequencies.

The next two sections present the detailed load impedance analysis to provide
the theoretical background for Fig. 1.2. The first section deals with the asymptotic
analysis of the load impedance using the EET. The ensuing section discusses the
validity of replacing the converter with a negative resistance.

1.1.2 Load Impedance Analysis Using EET

The load impedance is analyzed using the extra element theorem (EET). Figure
1.3 illustrates the application of the EET. The ZiC(s) in Fig. 1.3 denotes the input
impedance of the converter. By designating ZiC(s) as an extra element, Fig. 1.3(a)
is modified to Fig. 1.3(b) and subsequently redrawn into Fig. 1.3(c) for the EET
application. The load impedance ZL(s) is expressed as

ZL(s) =
v̂s(s)

ı̂s(s) ZiC 6=∞
= Zif∞

1 +
ζ̄iC(s)

ZiC(s)

1 +
z̄iC(s)

ZiC(s)

(1.6)

by applying the EET to Fig. 1.3. The open-circuit transfer gain Zif∞ is the input
impedance of the filter stage evaluated with the converter removed: ZiC(s) =∞. The
null driving point impedance, ζ̄iC(s) = vT (s)/iT (s)v̂s=0, is the output impedance of
the filter stage assessed with the input port shorted. The null driving point impedance
is denoted as the short-circuit filter output impedance, Zof0.

The driving point impedance, z̄iC(s) = vT (s)/iT (s)ı̂s=0, is the filter output
impedance determined with the input port opened, referred to as the open-circuit
filter output impedance, Zof∞. The circuit illustrations of Zif∞, Zof 0, and Zof∞
are given in Fig. 1.4.

The load impedance ZL(s) is now expressed as

ZL(s) = Zif∞

1 +
Zof0

ZiC(s)

1 +
Zof∞

ZiC(s)

(1.7)

The graphical analysis method will be applied to (1.7) to portray the asymptotic
behavior of the load impedance. For this purpose, it is necessary to examine the
frequency responses of the four impedances, ZiC(s), Zif∞, Zof0, and Zof∞ in
(1.7).

The input impedance of the regulated converter, ZiC(s), will be analyzed in a
later section. Based on the results of the upcoming analysis, the general shape of
|ZiC | is depicted in Fig. 1.5(a). The ZiC(s) behaves as a negative resistance at low
frequencies. This low-frequency asymptote stretches beyond mid frequencies. The
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Figure 1.3 Load subsystem representations. (a) Load subsystem. (b) Representation of load
subsystem using converter input impedance, ZiC . (c) Modification of (b) for EET application.
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Figure 1.4 Illustrations of Zif∞, Zof0, and Zof∞.

|ZiC | often undergoes a transitional dipping near the loop gain crossover frequency
of the converter, marked as ωc in Fig. 1.5(a), and rises linearly thereafter.

The asymptotic plots for Zif∞, Zof0, and Zof∞ can easily be drawn using the
Bode plot technique. Figure 1.5(b) shows the asymptotic plots of |Zif∞|, |Zof0|, and
|Zof∞| together with |ZiC |. As shown in Fig. 1.5(b), the condition |Zof0| � |ZiC |
is met for all frequencies when the filter is properly designed. Justifications for this
statement will be given in a later chapter which deals with analysis and design of
filter stages. From the ZL(s) expression in (1.7) and Fig. 1.5(b), the load impedance
ZL(s) can be approximated as follows.
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Figure 1.5 Asymptotic plots for various impedances. (a) Asymptotic plots for |ZiC |.
(b)Asymptotic plots for |ZiC |, |Zif∞|, |Zof 0|, and |Zof∞|. (c) Construction of |ZL|.

1) With the condition |Zof0| � |ZiC | for all frequencies, the load impedance in
(1.7) is simplified to

ZL(s) = Zif∞

1 +
Zof0

ZiC(s)

1 +
Zof∞

ZiC(s)

≈ Zif∞
1

1 +
Zof∞

ZiC(s)

(1.8)

2) For the frequencies where the condition |Zof∞| � |ZiC | is satisfied, the ex-
pression (1.8) is approximated as

ZL(s) = Zif∞
1

1 +
Zof∞

ZiC(s)

≈ Zif∞
1

Zof∞

ZiC(s)

(1.9)

which is further reduced to

ZL(s) ≈ ZiC(s) (1.10)

by noting that |Zif∞| ≈ |Zof∞| in the frequency range where |Zof∞| � |ZiC |.
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3) For the frequencies where the condition |Zof∞| � |ZiC | is met, the expression
(1.8) is approximated as

ZL(s) = Zif∞
1

1 +
Zof∞

ZiC(s)

≈ Zif∞ (1.11)

The dividing line for the approximations of (1.10) and (1.11) occurs at the
frequency labeled as ω∗P in Fig. 1.5(b). By combining (1.10) and (1.11), it
follows that

ZL(s) ≈

 ZiC(s) : for frequencies below ω∗p

Zif∞ : for frequencies above ω∗p
(1.12)

Figure 1.5(c) shows the construction of |ZL| using (1.12).

EXAMPLE 1.1 Filter Impedances and Load Impedance

This example shows the accuracy of the asymptotic analysis for ZL(s). Figure
1.6(a) shows the load subsystem used in this example. The Bode plots of |ZL|,
|ZiC |, |Zif∞|, |Zof0|, and |Zof∞| of the load subsystem are shown in Figs. 1.6(b)
and 1.6(c). A close resemblance between Fig. 1.5 and Fig. 1.6 confirms the accuracy
of the preceding analysis.

1.1.3 Negative Resistance Approximation of ZiC(s)

The previous analysis revealed the asymptotic behavior of the load impedance. At
low frequencies, the load impedance follows the input impedance of the converter:
ZL(s) ≈ ZiC(s). At mid and high frequencies, on the other hand, the load impedance
tracks the open-circuit input impedance of the filter, ZL(s) ≈ Zif∞, which is
determined with the condition that the converter stage is removed. This points out
that the filter stage masks the mid- and high-frequency dynamics of the converter
stage and the converter stage is only influential at low frequencies. Consequently,
when analyzing the load impedance ZL(s), the low-frequency asymptote of ZiC(s)
can be stretched for the entire frequency range and used as the replacement of the
actual ZiC(s), without causing any noticeable error.

As will be demonstrated later, the input impedance of a regulated converter be-
comes a negative resistance at low frequencies, whose value is given by (1.1). For
the load impedance evaluation, a regulated converter can thus be replaced with the
negative resistance given by (1.1). The substitution of ZiC(s) by −RiC is referred
to as the negative resistance approximation for ZiC(s).

The previous load impedance analysis in Fig. 1.2 adopted the negative resistance
approximation. By comparing Fig. 1.2 and Fig. 1.5, it is clear that |ωp| = ω∗p =
1/(CfRiC).
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Figure 1.6 Bode plots of impedances. (a) Load subsystem. (b) Bode plots of |ZiC |, |Zif∞|,
|Zof0|, and |Zof∞|. (c) Bode plots of |ZiC |, |Zif∞|, and |ZL|.

The conclusions of this section can be extended to include all general load subsys-
tems. The negative resistance approximation for ZiC(s) is applicable to all converter
topologies. Also, the construction procedure for the load impedance ZL(s) is valid
for all other filter stage configurations combined with the negative resistance −RiC .

Accuracy of Negative Resistance Approximation EXAMPLE 1.2
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Figure 1.7 Accuracy of negative resistance approximation for ZL(s).

The accuracy of the negative resistance approximation for ZiC(s) is assessed in this
example. Figure 1.7 compares the two different load impedances of the load subsys-
tem used in Example 1.1. The first is evaluated using the exact input impedance
of the regulated converter, ZiC(s), while the other is simulated using −RiC for
ZiC(s). The two impedances are indistinguishable in both magnitude and phase
characteristics.

1.2 STABILITY ANALYSIS OF LOAD-COUPLED CONVERTERS

Example ?? in the previous chapter demonstrated that the load impedance could
markedly alter the performance of converters. Thus, the impacts of the load impedance
have long been the subject of researches. The most important concern was whether
a converter, which was stable under the uncoupled condition, could become unstable
after being coupling with certain load impedances. If so, what types of the load
impedance would destabilize a previously stable converter? If the converter remains
stable, what changes will happen in the other performance criteria? We desire to
answer these questions.

This section investigates the stability of the converter coupled with the load sub-
system discussed in the previous section. An illustrative example is shown in Fig. 1.8.
Stability can be analyzed using the loop gain of the load-coupled converter. Referring
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Figure 1.8 converter coupled with another converter via filter stage.

to Table 11.1, the loop gain of the load-coupled converter, TmL(s), is expressed as

TmL(s) =
TmU (s)

1 +
(

1 + TmU (s)
)ZoU (s)

ZL(s)

(1.13)

where TmU (s) is the loop gain of the uncoupled converter, ZoU (s) is the output
impedance of the uncoupled converter, and ZL(s) is the load impedance. Stability
of the load-coupled converter is assessed using the characteristic equation

1 + TmL(s) = 0 (1.14)

which is given by

1 +
TmU (s)

1 +
(

1 + TmU (s)
)ZoU (s)

ZL(s)

= 0 (1.15)

The expression (1.15) is rearranged as

(
1 + TmU (s)

)(
1 +

ZoU (s)

ZL(s)

)
= 0 (1.16)

The solutions of this equation constitute the poles of the load-coupled converter.
The expression (1.16) reveals that the poles of the load-coupled converter are

determined as the union of the poles of the uncoupled converter and the solutions of
1 + ZoU (s)/ZL(s) = 0. It also indicates that the loading does not alter the existing
poles of the uncoupled converter, but just creates new poles.

We assume the uncoupled converter is stable. Then, the stability of the load-
coupled converter is decided by the solutions of 1+ZoU (s)/ZL(s) = 0. Accordingly,
the ratio ZoU (s)/ZL(s) can be treated as a loop gain which determines stability of
the load-coupled converter, as is the case with the regular loop gain TmU (s) of
the uncoupled converter. In this perspective, the impedance ratio ZoU (s)/ZL(s) is
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Figure 1.9 Bode plot and polar plot of impedance ratio ZoU/ZL as minor loop gain. (a)
Bode plot of |ZoU | and ZL. (b) Bode plot of |Tmn|. (c) Polar plot of Tmn.

defined as the minor loop gain†

Tmn(s) =
ZoU (s)

ZL(s)
(1.17)

Now, the stability of the load-coupled converter is assessed from the solutions of
1 + Tmn(s) = 0. The Nyquist criterion will be applied to Tmn(s) to judge whether
the load-coupled converter is stable or not. In addition, the phase margin and gain
margin will be defined on Tmn(s) to quantify the relative stability of the converter.

We illustrate the stability analysis using typical ZL(s) and ZoU (s) characteristics.
Figure 1.9(a) depicts the Bode plots of |ZL| and |ZoU |, which indicates that |ZoU |
exceeds |ZL| in the frequency range of ω1 < ω < ω2. Figure 1.9(b) is the Bode plot
of |Tmn| = |ZoU |/|ZL|. For the frequencies where |ZoU | > |ZL|, |Tmn| rises above
the 0 dB line. Figure 1.9(c) displays the polar plot of Tmn(s). The polar plot traces
a closed path, starting from and returning to the origin, as the frequency ω increases
from zero to infinity. In the frequency range of ω1 < ω < ω2, where the |Tmn| rises
above the 0 dB line, the polar plot travels outside the unit circle.

1.2.1 Absolute Stability

The absolute stability of the load-coupled converter is determined by applying the
Nyquist criterion to the polar plot trajectory of Tmn(s) = ZoU (s)/ZL(s). The
converter becomes unstable when the polar plot trajectory encircles the (−1, 0) point.
Otherwise, the converter stands stable after loading. The illustrative polar plot in Fig.
1.9 is a stable case.

†The impedance ratio ZoU/ZL(s) was originally termed as the minor loop gain in [2].
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Figure 1.10 Output impedances of uncoupled converters. (a) Uncoupled buck converters.
(b) Uncoupled boost converter.

As the first step of stability analysis, the discussions about ZL(s), ZoU (s), and
Tmn(s) need to be extended to general cases. The Bode plot of a typical ZL(s) was
shown in Fig. ??(c) and Fig. 1.7. The ZL(s) behaves as a negative resistance at low
frequencies and exhibits a transitional dipping at mid frequencies. The phase of the
load impedance varies between −90◦ < 6 ZL < 90◦ over the dipping.

The output impedance of the uncoupled converters, ZoU (s), was investigated in
Chapter 5. The results of this analysis are repeated in Fig. 1.10, which shows the
ZoU (s) of the buck converter in comparison of that of the boost converter. Figure
1.10 two different ZoU (s) patterns.

The ZoU (s) of the buck converter in Fig. 1.10(a) showed inductive characteristics
at low frequencies and exhibited resistive behaviors at mid and high frequencies.
This pattern of ZoU (s) is referred to as Type A output impedance. The ZoU (s) of the
boost converter in Fig. 1.10(b) revealed a dissimilar pattern. TheZoU (s) undergoes a
transitional peaking at mid frequencies before becoming resistive at high frequencies.
The output impedance of this pattern is called Type B output impedance.
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Figure 1.11 Bode plot and polar plot of minor loop gain (a) Type A output impedance case.
(b) Type B impedance case.

Type A output impedance may occur in some buck converters in which the esr
zero of the power stage transfer functions is located at sufficiently low frequencies.
Type B output impedance is more common as it appears most cases of boost and
buck/boost converters, and many cases of buck converters.

Figure 1.11 portraits the conceptual plots for the |ZoU | and |ZL|, along with the
polar plot trajectory of Tmn(s) = ZoU (s)/ZL(s). Figure 1.11(a) is the case where
Type A output impedance is coupled with practical load subsystems, while Fig.
1.11(b) corresponds to the case of Type B output impedance. For each case, three
different load impedances, ZL1(s), ZL2(s), and ZL3(s), are considered. The two
cases both indicate that |ZoU | and |ZL| touch or overlap each other at the frequencies
where |ZL| dips into the bottom value while |ZoU | attains its peak value.

The trajectories of the minor loop gain, Tmn(s) = ZoU (s)/ZL(s), are shown in
the right-hand side in Fig. 1.11. The polar plots show different patterns in the two
cases. The polar plot for the case of Type A output impedance is shown in 1.11(a).
For this case, the phase of Tmn(s), 6 Tmn = 6 ZoU− 6 ZL, changes between

0◦ − (−90◦) > 6 Tmn > 0◦ − (90◦) ⇒ 90◦ > 6 Tmn > −90◦

because 6 ZoU stays at 0◦ while the phase of ZL(s) varies between −90◦ < 6 ZL <
90◦ over the impedance overlap. Accordingly, the polar plot always lies in the right-
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half region of the s-plane, regardless of the magnitude of the impedance overlap,
and never encircles the critical (−1, 0) point. Consequently, the converter always
maintains stability.

Figure 1.11(b) illustrates the Bode plots of |ZoU | and |ZL|, together with the polar
plot of Tmn(s), for Type B output impedance case. The phase of Tmn(s) alters
between

90◦ − (−90◦) > 6 Tmn > −90◦ − (90◦) ⇒ 180◦ > 6 Tmn > −180◦

because the phase of ZoU (s) varies between 90◦ > 6 ZoU > −90◦ over the
impedance overlap. For this case, the polar plot partially penetrates into the left-
half region of the s-plain. As the overlap grows larger, the trajectory travels closer to
the (−1, 0) point. However, the polar plot never encircles the (−1, 0) point because
6 Tmn is bounded between 180◦ > 6 Tmn > −180◦. This indicates that the loading
does not lead to instability.

The above argument is generalized in Fig. 1.12, which illustrates the impedance
overlaps and polar plots of Tmn(s) for four different cases. A typical |ZoU | of Type B
is shown in Fig. 1.12. The phase of ZoU (s) starts from 90◦ at low frequencies, drops
to −90◦ over the mid frequency peaking, and settles to 0◦ at high frequencies. On
the other hand, the phase of the load impedance alters between −90◦ < 6 ZL < 90◦

over the impedance overlap. To predict the evolution of the polar plot trajectory, the
boundaries of 6 Tmn = 6 ZoU− 6 ZL are evaluated for the four different cases.

• Case A: 90◦ − (−90◦) > 6 (ZoU/ZL) > 90◦ − (90◦)
⇒ 180◦ > 6 (ZoU/ZL) > 0◦

• Case B: 90◦ − (−90◦) > 6 (ZoU/ZL) > −90◦ − (90◦)
⇒ 180◦ > 6 (ZoU/ZL) > −180◦

• Case C: −90◦ − (−90◦) > 6 (ZoU/ZL) > −90◦ − (90◦)
⇒ 0◦ > 6 (ZoU/ZL) > −180◦

• Case D: 0◦ − (−90◦) > 6 (ZoU/ZL) > 0◦ − (90◦)
⇒ 90◦ > 6 (ZoU/ZL) > −90◦

The patterns of the polar plots are shown in Fig. 1.12. The polar plots do not encircle
the (−1, 0) point for all the four cases and the converter always stays stable. Here,
it should be noted that the cases shown in Figs. 1.11 and 1.12 are based on the
following assumptions.

• The loop gain of the uncoupled upstream converter has a sufficient phase margin
so that |ZoU | does not show an excessive peaking.

• The filter stage in the load subsystem is well damped to avoid a large dipping

Now we are in the position to answer the question about the stability of the load-
coupled converter. Could certain load impedances destabilize the converter after
loading? For some cases, |ZL| is larger than |ZoU | for all frequencies, thereby initially
precluding the possibility of any impedance overlap. The converter is invariably
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Figure 1.12 Impedance overlaps and polar plots of ZoU/ZL for general cases.

stable for this case. Actually, avoiding the overlap is the sufficient condition for
stability. However, this sufficient condition rarely holds true in practice and the
impedance overlap usually occurs after loading. Yet, for most practical cases, the
overlap happens in the similar manner to those of Fig. 1.12. Therefore, the converter
continues to be stable despite the presence of the impedance overlap, provided that
the uncoupled converter secures a reasonable phase margin and the filter stage is
adequately damped.

EXAMPLE 1.3 Stability Analysis of Load-Coupled Boost Converter

Illustrative examples are given in Fig. 1.13 to validate the preceding discussions.
Figure 1.13(a) shows a load-coupled boost converter, where a current-mode con-
trolled boost converter is integrated with a regulated buck converter through a filter
stage. Both the boost converter and buck converter are designed based on standard
design procedures. Figure 1.13(b) shows |ZoU | of the boost converter in comparison
with the four different load impedances |ZL|, Load A, Load B, Load C, and Load
D. The load impedances are generated from the buck converter with four different
sets of the filter parameters.

• Load A: Lf = 210 µH, Rlf = 35 mΩ, Cf = 12500 µF, and Rcf = 10 mΩ

• Load B: Lf = 21 µH, Rlf = 15 mΩ, Cf = 1250 µF, and Rcf = 30 mΩ
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• Load C: Lf = 2.1 µH, Rlf = 10 mΩ, Cf = 125 µF, and Rcf = 35 mΩ

• Load D: Lf = 2.1 µH, Rlf = 10 mΩ, Cf = 10 µF, and Rcf = 25 mΩ

Figure 1.13(c) shows the polar plots of Tmn(s) for the four different cases. As
predicted, all the polar plots do not encircle (−1, 0) point and the upstream boost
converter stands stable after integration. The experimental verification of this anal-
ysis will be presented in a later section.

The previous analysis indicates that the converter remains stable after loading if
the standard design procedures are exercised for both the converter stage and filter
stage. Yet, the risk of instability still exists when a poorly-designed converter is
coupled with an ill-conditioned load subsystem. A hypothetical example is shown in
Fig. 1.14, where Type B output impedance is connected with certain load impedances.
In this example, the impedance overlap happens at low frequencies where the load
impedance behaves as a negative resistance,−RiC . The phase of the load impedance
is now fixed at 6 ZL = −180◦ and the phase of Tmn(s) thus changes between

90◦ − (−180◦) > 6 Tmn > −90◦ − (−180◦) ⇒ 270◦ > 6 Tmn > 90◦

The polar plot passes the (−1, 0) point when |ZL| and |ZoU | touch each other and
encircles the (−1, 0) point when the two impedances overlap. These cases break
the Nyquist criterion and lead to instability. The equation 1 + ZoU (s)/ZL(s) = 0
finds two roots on the imaginary axis when the polar plot passes (−1, 0) point. The
two roots move into the right-half plane (RHP) of the s-plane when the polar plot
encircles the (−1, 0) point.

The unstable example in Fig. 1.14 is conceived under the following two assump-
tions.

1) The uncoupled converter produces the output impedance peaking at very low
frequencies. This would happen only provided that the voltage feedback is
improperly designed so that the loop gain crossover occurs at unusually low
frequencies. When the standard design procedures are followed, the uncoupled
converter rarely generates such a low-frequency output impedance peaking.

2) The parameters of the filter stage are uncommonly selected so that the load
impedance shows a dipping at higher frequencies than normal cases. The
resulting filter stage would not provide sufficient filtering and EMI standard
won’t be met.

The previous arguments insinuate that instability illustrated in Fig. 1.14 will not take
place in practical applications.

Another case of instability is depicted in Fig. 1.15. This example demonstrates
the impacts of the filter stage on stability. Referring to Fig. 1.15(a), a filter stage
is initially employed between the two converter stages. The impedance overlap
between |ZoU | and |ZL| and Tmn(s) trajectory are shown with thin lines in Figs.
1.15(b) and 1.15(c). Stability is confirmed from the Tmn(s) trajectory. Now, the filter
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Figure 1.13 Stability analysis of load-coupled boost converter. (a) Boost converter feeding
buck converter via filter stage. (b) Load impedances |ZL| and output impedance of uncoupled
converter |ZoU |. (c) Polar plots of minor loop gain.
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Figure 1.14 Hypothetical example of instability. (a) Bode plot of |ZoU | and |ZL|. (b) Polar
plot of ZoU/ZL.

stage is removed and the upstream converter is directly connected to the downstream
converter. The load impedance and the minor loop gain at the absence of the filter
stage, denoted as Z ′L(s) and T ′mn(s) in Fig. 1.15, are shown with thick lines. The
polar plot violates the Nyquist criterion and the system loses stability.

The filter stage is primarily employed for filtering, yet it also plays an impor-
tant role in the system stability. The filter stage prevents potential instability by
masking the negative input resistance of the regulated converter at the frequencies of
impedance overlap. Thus, the filter stage is essential not only for the filtering but the
system stability as well.

Instability at Absence of Filter Stage EXAMPLE 1.4

Instability described in Fig. 1.15 is exemplified in Fig. 1.16. Figure 1.16(a) shows
a boost converter coupled with a load subsystem. The load subsystem is normally
designed. However, the control parameters of the upstream boost converter are
deliberately selected so that |ZoU | produces a large peaking. Figure 1.16(b) shows
|ZoU | in comparison with the load impedance with the filter stage, |ZL|, and mag-
nitude of the load impedance without the filter stage, |Z′L|. The polar plots of the
two different minor loop gains, Tmn(s) = ZoU (s)/ZL(s) with the filter stage and
T ′mn(s) = ZoU (s)/Z′L(s) without the filter stage, are shown in Fig. 1.16(c). The
polar plot of T ′mn(s) encircles the (−1, 0) point thus predicting instability at the
absence of the filter stage.

Figure 1.16(d) is the output voltage waveform of the boost converter, going
through the transition from the stable to unstable operations. Initially, the fil-
ter stage was employed to produce a stable output voltage. In the middle of the
stable operation, the filter stage is removed and the boost converter is directly con-
nected to the buck converter. As predicted, the output voltage develops a growing
oscillation, as a token of instability.
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Figure 1.15 Impacts of filter stage on system stability. (a) System block diagram. (b) Bode
plot of |ZoU | and ZL. (b) Polar plot of Tmn.

Concluding Summary:

Load-coupled converters become unstable only provided that the impedance overlap
happens at the frequencies where the load impedance behaves as a negative resistance.
converters coupled with general linear loads, not presenting the negative resistance,
shall maintain stability, regardless of the extent and the frequency range of the
impedance overlap.

Regulated converters, presenting a negative resistance at low frequencies, are the
prime source of instability. Even for these cases, instability can readily be prevented
by avoiding the impedance overlap at low frequencies. In fact, the low-frequency
impedance overlap rarely occurs in practice when converters and filter stages are
properly designed.

The loading in general will not make the converter unstable. Nonetheless, the
loading could deteriorate other performance of the converter. The loading could
induce a peaking in frequency responses or make the transient responses oscillatory
or sluggish. The loading effects on the converter performance will be treated later in
detail.
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of boost converter.

1.2.2 Relative Stability

The characteristic equation of the load-coupled converter is given by(
1 + TmU (s)

)(
1 +

ZoU (s)

ZL(s)

)
= 0 (1.18)
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The impedance ratio ZoU (s)/ZL(s), defined as the minor loop gain Tmn(s), was
used to judge the absolute stability. Now, the minor loop gain is employed to quantify
the relative stability of the converter, as is the case with the regular loop gain TmU (s).
The phase margin and gain margin are defined on Tmn(s) as follows.

Phase Margin: Referring to Fig. 1.17, two different phase margins are defined at
the two distinct frequencies, ω1 and ω2, where the polar plot crosses the unit
circle, or equivalently |Tmn| passes the 0 dB line
• Phase margin at ω1: PM1 = 180◦ − 6 Tmn(jω1)

• Phase margin at ω2: PM2 = 6 Tmn(jω2)− (−180◦)

Figure 1.17(a) depicts the phase margins on the polar plot, while Fig. 1.17(b)
portraits the phase margins on the Bode plot.

Gain Margin: The gain margin is defined at the frequency ω0 where the polar plot
crosses the− real axis, or equivalently 6 Tmn falls to 180◦. When the polar plot
crosses the (−k, 0) point, the gain margin is given by GM = 20 log(1/k). The
gain margin is illustrated in Figs. 1.17(a) and 1.17(b).

The phase and gain margins specify the additional phase change and magnitude
increase that can be added to Tmn(s) = ZoU (s)/ZL(s) before the converter en-
counters instability. More importantly, the stability margins serve as a gauge for
the closed-loop performance of the converter. In particular, a small phase margin is
an indication of peaking in transfer functions and oscillatory behaviors in transient
responses. Details about this topic will be given in a later section.

Most significantly, the stability margins of the minor loop gain usually become
the stability margins of the loop gain of the load-coupled converter. For example,
the phase margin PM1, defined for the minor loop gain in Fig. 1.17, becomes the
phase margin of the loop gain of the load-coupled converter. The proof of this rather
surprising fact will be given in the next section.

EXAMPLE 1.5 Minor loop gain Tmn(s) and phase margins

This example shows the impedance overlap, polar plot, and Bode plot of the minor
loop gain Tmn(s) of the dc power conversion system shown in Fig. 1.18(a). Figure
1.18(b) displays the impedance overlap between ZoU (s) and ZL(s). The polar plot
and Bode plot of the minor loop gain, Tmn(s) = ZoU (s)/ZL(s), are shown in Fig.
1.18(c). The phase margins of Tmn(s) are determined as PM1 = 62◦ at ω1 =
2π · 300 rad/s and PM2 = 60◦ at ω2 = 2π · 2.2× 103 rad/s.

1.3 LOOP GAIN ANALYSIS OF LOAD-COUPLED CONVERTERS

The load subsystem seldom destabilizes a previously stable upstream converter.
However, the load impedance usually induces significant changes in the converter



i
i

i
i

i
i

i
i

1.3 Loop Gain Analysis of Load-Coupled Converters 23

1PM

2PM

GM

| |mnT

eqT

0dB

(a) (b)

1PM

2PM

1ω

2ω

( 1,0)-
( ,0)k-

1
GM 20log

k

æ ö÷ç= ÷ç ÷çè ø

Unit circle

0ω

1ω 2ω

0ω

180- 

180

Figure 1.17 Phase margin and gain margin of minor loop gain. (a) Polar plot representation.
(b) Bode plot representation.

dynamics, yielding very complex loop gain characteristics. This section investigates
the loop gain of the load-coupled converter, focusing on the impacts of the load
subsystem.

1.3.1 Graphical Analysis and Construction of TmL(s)

The loop gain expression in (1.13) can be modified as

TmL(s) =
TmU (s)

1 +
(

1 + TmU (s)
)ZoU (s)

ZL(s)

=
TmU (s)

1 +
(

1 + TmU (s)
)
Tmn(s)

=
TmU (s)

1 + Tmn(s) + TmU (s)Tmn(s)
(1.19)

whereTmU (s) is the loop gain of the uncoupled converter andTmn(s) = ZoU (s)/ZL(s)
is the minor loop gain. The converter loop gain will be unaffected, TmL(s) ≈
TmU (s), when the conditions |Tmn| � 1 and |TmUTmn| � 1 are simultaneously
met. However, this requirement is usually not satisfied and the loop gain character-
istics are thus to be altered by ZL(s). The expression (1.19) is used to characterize
and construct the loop gain of the load-coupled converter.

Figure 1.19 shows the construction of the converter loop gain |TmL| based on
(1.19). The following assumptions are made to simplify the |TmL| construction.

1) The loop gain of the uncoupled converter, |TmU |, has an integrator structure and
crosses the 0 dB line at ωc with a phase margin of PMc.
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2) The minor loop gain, |Tmn| = |ZoU/ZL|, crosses the 0 dB line at ω1 and ω2

with the respective phase margin of PM1 and PM2.

In Fig. 1.19, the asymptotic plot for |TmU Tmn| is drawn by adding |TmU | and |Tmn|.
As shown in Fig. 1.19, the construction of |TmL| is classified into the three cases,
based on the locations of the crossover frequencies of |TmU | and |Tmn|.

Case A: Shown in Fig. 1.19(a) is Case A, where the crossover frequencies of |Tmn|
come earlier than the crossover frequency of |TmU |, ω1 < ω2 < ωc. Up to the
frequency where |TmU Tmn| crosses the 0 dB line, denoted as ω′c in Fig. 1.19(a),
the conditions 1 � |TmU Tmn| and |Tmn| � |TmU Tmn| prevail. Thus, for the
frequencies below ω′c, the loop gain is given by

TmL(s) =
TmU (s)

1 + Tmn(s) + TmU (s)Tmn(s)

≈ TmU (s)

Tmn(s) + TmU (s)Tmn(s)
≈ TmU (s)

TmU (s)Tmn(s)
=

1

Tmn(s)

Thus, |TmL| follows the mirror image of |Tmn| reflected on the 0 dB axis, as high-
lighted with thick lines in blue in Fig. 1.19(a). For the frequencies beyond ω′c where
the conditions |Tmn| � 1 and |TmUTmn| � 1 are met, the loop gain of the load-
coupled converter trails the loop gain of the uncoupled converter, TmL(s) ≈ TmU (s).
A peaking may occur at ω′c where |TmL| diverts from 1/|Tmn| to |TmU |, as shown
in Fig. 1.19(a).

The |TmL| exhibits very involved characteristics, even crossing the 0 dB line three
times. However, the converter remains stable as far as Tmn(s) meets the Nyquist
stability criterion. With multiple 0 dB crossovers, the phase margin is not uniquely
determined for this case.

Case B: Figure 1.19(b) shows Case B, where the crossover frequency of |TmU |
appears between the crossover frequencies of |Tmn|, ω1 < ωc < ω2. For the
frequencies belowωc where the conditions 1� |TmU Tmn| and |Tmn| � |TmU Tmn|
hold, |TmL| follows 1/|Tmn|, as is the previous case. On the other hand, the
conditions 1 � |Tmn| and |TmU Tmn| � |Tmn| are valid in the frequency range of
ωc < ω < ω2. These conditions simplify loop gain expression to

TmL(s) =
TmU (s)

1 + Tmn(s) + TmU (s)Tmn(s)

≈ TmU (s)

Tmn(s) + TmU (s)Tmn(s)
≈ TmU (s)

Tmn(s)

This indicates that, in the frequency range of ωc < ω < ω2, the loop gain magnitude
is formed by the relationship of |TmL| = |TmU |−|Tmn|. At the frequencies after ω2,
|TmL| tracks |TmU | with the conditions |Tmn| � 1 and |TmUTmn| � 1. A peaking
could appear at the second crossover frequency of |Tmn|, ω2. The magnitude of the
peaking is inversely proportional to the phase margin of |Tmn| at ω2, PM2.
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Table 1.1 Summary of Loop Gain Analysis

TmL from low
to mid

frequencies

0 dB crossover
frequency of

TmL

Phase margin of TmL

Case A
ω1 < ω2 < ωc

TmL =
1

Tmn
ω1, ω2, and ωc Not uniquely defined

Case B
ω1 < ωc < ω2

TmL =
1

Tmn
ω1 PM1

Case C
ωc < ω1 < ω2

TmL = TmU ωc PMc

As shown in Fig. 1.19(b), the crossover frequency of |TmL| occurs at ω1 which
is the first crossover frequency of |Tmn|. At the frequencies around ω1, TmL(s)
is given by the inverse of Tmn(s): TmL(s) = 1/Tmn(s). This implies the phase
margin of TmL(s) is the same as the phase margin of Tmn(s). The sameness
of the phase margin is illustrated in Fig. 1.20 with a simple example. Figure
1.20(a) shows the Bode plot of Tmn(s) and 1/Tmn(s), where Tmn(s) is selected
as Tmn(s) = 7148/(s(1 + s/5000)). The Bode plots are converted into the polar
plots in Fig. 1.20(b) to show the phase margins are identical.

Case C: Figure 1.19(c) displays Case C with ωc < ω1 < ω2. The |TmL| largely
trails |TmU |, except for the frequency range of ω1 < ω < ω2, where |TmL| tracks
|TmU/Tmn| due to the conditions 1 � |Tmn| and |TmUTmn| � |Tmn|. The
crossover frequency and phase margin of the load-coupled converter are the same as
those of the uncoupled converter, because the load impedance is only effective after
the crossover frequency of TmU (s).

The outcomes of the preceding loop gain analysis are summed up in Table 1.1.
Among the three cases, Case B will occur most frequently for the following reasons.
The peaking in |ZoU | usually appears at the crossover frequency of |TmU |. On the
other hand, the impedance overlap typically takes place over the frequencies at which
|ZoU | reaches its peak. Therefore, the crossover frequency of |TmU | lies inside the
frequency range of the impedance overlap – Case B in Fig. 1.19.

For Case B, the crossover frequency and phase margin of TmL(s) are determined
by those of the minor loop gain Tmn(s). This indicates that, although the loop gain
is substantially altered over a wide frequency range, the converter remains stable
as far as Tmn(s) meets the Nyquist stability criterion. Furthermore, the converter
retains good transient responses unless the phase margin and the crossover frequency
of Tmn(s) are unduly small and narrow.
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Figure 1.21 Dc power conversion system.

EXAMPLE 1.6 Loop Gain Analysis of Load-Coupled Boost Converter

This example validates the preceding loop gain analysis. Figure 1.21 is the dc
power conversion system employed in this example. Figure 1.22(a) shows the load
impedance |ZL| of the three different load subsystems, together with the output
impedance of the uncoupled boost converter, |ZoU |. Each load subsystem contains
an identical buck converter in common, yet has unequal circuit parameters for the
filter stage
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• Load A: Lf = 210 µH, Rlf = 35 mΩ, Cf = 12500 µF, and Rcf = 10 mΩ
• Load B: Lf = 21 µH, Rlf = 15 mΩ, Cf = 1250 µF, and Rcf = 30 mΩ
• Load C: Lf = 2.1 µH, Rlf = 10 mΩ, Cf = 125 µF, and Rcf = 35 mΩ

As shown in Fig. 1.22(b), the three load subsystems produce Case A, Case B,
and Case C, covered in the previous analysis. Figure 1.22(c) shows the loop gains
of the boost converter coupled with each load subsystem. The loop gain exhibits
substantial changes after coupling with Load A and Load B.

Figure 1.22(d) displays the simulation results for Load A, which reveals a close
agreement with the asymptotic analysis for Case A in Fig. 1.19(a). Figure 1.22(e) is
the results for Load B, which corresponds to Case B in Fig. 1.19(b). The simulation
results of Load C, or Case C, are displayed in Fig. 1.22(f).

Verification of Converter Performance for Case B EXAMPLE 1.7

The dc power conversion system used in the previous analyses was built. The loop
gain and step load response of the boost converter were then measured with Load
B. The same experiments were performed after replacing Load B with a current
sink. Figure 1.23(a) shows the measured loop gains of the load-coupled boost con-
verter, TmL(s), and uncoupled boost converter, TmU (s), along with the small-signal
simulation results. Close correlations between the experimental measurements and
analytical predictions support the validity and accuracy of the analyses.

Figure 1.23(b) exhibits the transient responses of the uncoupled and load-coupled
converters. The upper traces show the output voltage, vO(t), and inductor current,
iL(t), of the boost converter connected with a current sink load, in response to
2 A⇒ 1.5 A⇒ 2 A changes in the sink current. The lower traces are the waveforms
of the boost converter connected with Load B, where 92 W⇒ 69 W⇒ 92 W power
changes are introduced to the buck converter downstream. The loading makes the
transient response somewhat oscillatory and sluggish. Nonetheless, the converter re-
tains stability and performance after loading. Detailed discussions about the loading
effects on the transient response will be given in the next section.

Finally, Fig. 1.23(c) illustrates the minor loop gain for Load B. The crossover
frequency and phase margin of the minor loop gain are the same as those of the
loop gain of the boost converter integrated with the load subsystem.

1.3.2 Conditions for Unaffected Loop Gain Characteristics

It is instructive to identify the conditions that prevent the loop gain from being affected
by loading. Referring to the expression in (1.19), the loop gain stands unaffected
when the conditions |Tmn| � 1 and |TmUTmn| � 1 are met for the entire frequency
range.

Although the first condition |Tmn| � 1 might be met for all frequencies, the
second requirement |TmUTmn| � 1 is usually violated at low frequencies because
|TmU | becomes increasingly larger at lower frequencies. Thus, the low-frequency
loop gain characteristics are invariably altered by loading. However, if the condition
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|Tmn| � 1 is met for all frequencies, the change only occurs in the frequencies
well below the loop gain crossover frequency, thereby not affecting stability and
performance of the load-coupled converter.

Resistor-Coupled Buck Converter Case EXAMPLE 1.8

This example deals with the loop gain analysis of a buck converter connected to a
resistive load. Figure 1.24(a) shows the buck converter considered in this example.
This converter was used in Examples ?? through ?? in Chapter 4.
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Figure 1.24 Loop gain analysis of resistor-loaded buck converter. (a) Circuit diagram. (b)
Loop gain analysis.

The buck converter is loaded with a 1 Ω resistor. Accordingly, ZL(s) = 1 and
ZoU (s) itself is the minor loop gain, Tmn(s) = ZoU (s)/ZL(s) = ZoU (s). Figure
1.24(b) shows |Tmn|, |TmU |, |TmUTmn|, and |TmL|. The condition |Tmn| � 1 is well
satisfied for all frequencies. However, 1� |TmUTmn| is not met at low frequencies.
For the frequencies below ω′c where the conditions |Tmn| � 1 and |TmUTmn| � 1
prevail, the loop gain is given by

TmL(s) =
TmU (s)

1 + Tmn(s) + TmU (s)Tmn(s)
≈ TmU (s)

TmU (s)Tmn(s)
=

1

Tmn(s)
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On the other hand, for the frequencies beyond ω′c where the conditions |Tmn| � 1
and |ToUTmn| � 1 are met, the loop gain becomes

TmL(s) ≈ TmU (s)

Thus, the loading only alters the loop gain at frequencies below ω′c and the crossover
frequency and phase margin thus remain unchanged. The resulting loop gain was
previously shown in Fig. ?? in Example ??.

1.3.3 Section Summary

This section presented comprehensive loop gain analyses for load-coupled converters.
The graphical analysis was adapted to yield a simple method to predict the asymptotic
structure, crossover frequency, and phase margin of the converter loop gain. The
outcomes of this analyses are summarized in Fig. 1.19 and Table 1.1.

The loading invariably affects the loop gain of all practical converters. The
loading effects can be substantial in magnitude and wide in frequency. The loading
could yield very involved loop gain characteristics, even crossing the 0 dB line three
times. Even so, stability and performance of load-coupled converters can readily be
determined from the minor loop gain, Tmn(s) = ZoU (s)/ZL(s).

1) The converter always remains stable as far asTmn(s) meets the Nyquist criterion,
regardless of the extent and frequency range of the loading effect.

2) Very notably, the loop gain of the load-coupled converter is commonly given by
the mirror image of the minor loop gain reflected by the 0 dB axis: TmL(s) ≈
1/Tmn(s). For this case, the crossover frequency and phase margin of the
load-coupled converter are identical to those of the minor loop gain. When the
minor loop gain has a sufficient phase margin and high crossover frequency, the
load-coupled converter exhibits stability and good transient responses.

1.4 OUTPUT IMPEDANCE AND STEP LOAD RESPONSE ANALYSIS

In addition to the loop gain characteristics, the loading will influence other perfor-
mance criteria of the converter. This section investigates the output impedance and
step load response of load-coupled converters. First, the output impedance is studied
based on the graphical analysis. Then, the transient response of the output voltage
due to the step load change is predicted.
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Figure 1.25 Construction of |ZoL| plot using |ZL|, |ZoU |, and minor loop gain.

1.4.1 Output Impedance Analysis

Referring to Table ??, the output impedance of load-coupled converters, ZoL(s), is
given by

ZoL(s) = ZoU (s)
1

1 +
ZoU (s)

ZL(s)

(1.20)

where ZoU (s) is the output impedance of the uncoupled converter and ZL(s) is
the load impedance. The denominator of ZoL(s) contains the impedance ratio
ZoU (s)/ZL(s), which was defined as the minor loop gain Tmn(s).

Simplification of (1.20) yields

ZoL(s) ≈



ZoU (s)

ZoU (s)

ZL(s)

= ZL(s) : where |ZoU (s)/ZL| � 1

ZoU (s) : where |ZoU/ZL| � 1

(1.21)

Figure 1.25 shows the construction of the |ZoL| plot based on (1.21). The |ZoL|
follows |ZoU | at low and high frequencies where |ZoU/ZL| � 1. On the other hand,
|ZoL| tracks |ZL| in the frequency range of ω1 < ω < ω2, where |ZoU/ZL| rises
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above the 0 dB line. The output impedance remains unaffected, ZoL(s) ≈ ZoU (s),
if the condition |ZoU/ZL| � 1 is met for all frequencies.

The output impedance in Fig. 1.25 exhibits the two peaks around the 0 dB crossover
frequencies ofTmn(s), ω1 andω2. The peak can be transformed into an underdamped
second-order term in the s-domain expression, which arouses a decaying sinusoidal
oscillation in the time-domain response. The output impedance will show an addi-
tional peaking if the phase margins of Tmn(s) = ZoU (s)/ZL(s) is not sufficiently
large. Detailed analysis about the additional peaking will be provided in a later
chapter.

Output Impedances of Load-Coupled Boost Converter EXAMPLE 1.9

This example illustrates the output impedances of the boost converter shown in
Fig. 1.26(a). The parameters of the boost converter are slightly modified from those
of the previous examples. Three load subsystems are considered with the different
filter parameters.

• Load A: Lf = 210 µH, Rlf = 35 mΩ, Cf = 12500 µF, and Rcf = 10 mΩ
• Load B: Lf = 5.25 µH, Rlf = 15 mΩ, Cf = 4800 µF, and Rcf = 10 mΩ
• Load C: Lf = 2.1 µH, Rlf = 10 mΩ, Cf = 125 µF, and Rcf = 35 mΩ

The Bode plots of |ZoU | and three load impedances are shown in Fig. 1.26(b).
Figure 1.26(c) displays the output impedance |ZoL| of the boost converter for the
three different cases. For Load A and Load B, |ZoL| shows a peaking due to a small
phase margin of the minor loop gain.

1.4.2 Step Load Response Analysis

This section deals with the transient response due to the step change in the load
current. As demonstrated in Section 9.3.3, the transient behaviors of vO(t) can be
inferred from the output impedance. Figure 1.27(a) depicts |ZoU | of the uncoupled
converter and |ZoL| of the converter coupled with Load B. The general shape of vo(t)
for the two converters are shown in Fig. 1.27(b).

In Section 9.3.3, the correlations between ZoU (s) and vO(t) for the uncoupled
converter were discussed.

• The peak deviation in vO(t) is proportional to the product of the peak value
of the output impedance |ZoU |peak and size of the step load change Istep:
vO(t)peak ∝ |ZoU |peakIstep.

• The 5%-boundary settling time of vO(t) † is dictated by the first pole of ZoU (s),
ωp: ts = 3/ωp.

†The time interval required for vO(t) to reach within 5% of the final value.
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Figure 1.26 Output impedances of load-coupled boost converter. (a) Dc power conversion
system. (b) Output impedance of uncoupled boost converter and load impedances. (c) Output
impedances of load-coupled boost converter.

The behavior of vO(t) of the load-coupled converter is predicted from |ZoL|. As
previously discussed, the shape of |ZoL| signifies a decaying sinusoidal oscillation
in vO(t).
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Figure 1.27 Output impedance and step load response. (a) Output impedances. (b) Step
load responses.

• The peaks at ω1 and ω2 will both lead an oscillatory transient response. The
frequency of the oscillation coincides with the frequency of the peak. Because
ω1 � ω2, the high-frequency oscillation at ω2 vanishes so fast that it will not
show in vO(t) waveform. Thus, only the slow-decaying oscillation at ω1 will
appear in vO(t). The period of the decaying oscillation is given by tos = 2π/ω1.

• The initial upsurge of the sinusoidal oscillation is proportionate to the product
of the |ZoL|peak at ω1 and size of the step load change, Istep: vO(t)peak ∝
|ZoL|peakIstep.

• The decaying rate of the sinusoidal oscillation will determine the settling time
of vO(t). Based on the relationship between the frequency- and time-domain re-
sponses of a second-order system [3], the 5%-boundary settling time is estimated
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where PM1 is the phase margin of Tmn(s) at ω1.

Output Impedance and Step Load Response EXAMPLE 1.10

This example illustrates the output impedances and step load responses of the boost
converter cited in Example 1.9. The output impedances of the boost converter are
repeated in Fig. 1.28(a). The transient responses of the output voltage are shown in
Fig. 1.28(b). The top waveform is vO(t) in response to a 2 A ⇒ 1 A step decrease
in the load current. The waveform reveals a good match to the prediction of Fig.
1.27.

The transient responses of vO(t) with the three different load subsystems are
shown in the lower plots. Here, the equivalently same size of step load change was
introduced in the load current of the downstream buck converter. For Case A and
Case B, vo(t) shows an underdamped oscillation, as predicted in Fig. 1.27. For Case
A, the oscillation is more persistent and sluggish due to a larger peaking at the
lower frequency. Case B is the typical response that would occur most frequently in
practical applications, as discussed in the previous section. The response of Case C
is similar to that of the uncoupled converter because the output impedance largely
remains the same except for high-frequency characteristics.

1.5 AUDIO-SUSCEPTIBILITY

This section covers the asymptotic analysis of the audio-susceptibility and input
impedance of load-coupled converters. The audio-susceptibility is expressed as

AuL(s) = AuU (s)
1

1 +
ZoU (s)

ZL(s)

(1.23)

where AuU (s) is the audio-susceptibility of the uncoupled converter and ZL(s) is
the load impedance.

The expression in (1.23) is approximated as

AuL(s) ≈



AuU (s)

ZoU (s)

ZL(s)

: for frequencies where |ZoU/ZL| � 1

AuU (s) : for frequencies where |ZoU/ZL| � 1

(1.24)

Figure 1.29 illustrates the construction of |AuL| based on (1.24). In the frequency
range of ω1 < ω < ω2, the minor loop gain Tmn(s) = ZoU (s)/ZL(s) is reflected
as an additional attenuation in the audio-susceptibility of the load-coupled converter.
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Figure 1.29 Construction of |AuL| plot using AuU and minor loop gain.

The loading does not alter the audio-susceptibility provided that |ZoU/ZL| � 1
for all frequencies. The audio-susceptibility will show a peaking at the crossover
frequencies of the minor loop gain, Tmn(s) = ZoU (s)/ZL(s), if the phase margins
are not sufficiently large.

EXAMPLE 1.11 Audio-Susceptibility of Load-Coupled Boost Converter

This example shows the audio-susceptibility of the boost converter used in Examples
1.9 and 1.10. Figure 1.30(a) shows the minor loop gains, while Fig. 1.30(b) illustrates
the audio-susceptibilities of the load-coupled converter. The audio-susceptibility
shows good agreement with the predictions of Fig. 1.29.

1.6 INPUT IMPEDANCE

Referring to Table ??, the input impedance of the load-coupled converter is given by

ZiL(s) = ZiU (s)

1 +
ZoU (s)

ZL(s)

1 +
Z ′o(s)

ZL(s)

(1.25)

where ZiU (s) is the input impedance and ZoU (s) is the output impedance of the
uncoupled converter. The impedance Z ′o(s) represents the output impedance of the
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Figure 1.30 minor loop gain and audio-susceptibility. (a) minor loop gains. (b) Audio-
susceptibilities.

uncoupled converter evaluated with the input port opened. For most converter cases,
it can be shown that |ZL| � |Z ′o| so that 1� |Z ′o/ZL|. This condition simplifies the
ZiL(s) expression to

ZiL(s) ≈ ZiU

(
1 +

ZoU (s)

ZL(s)

)
(1.26)

which can be further approximated to
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Figure 1.31 Construction of |ZiL| plot using |ZiU | and minor loop gain.

ZiL(s) ≈


ZiU (s)

ZoU (s)

ZL(s)
: for frequencies where |ZoU/ZL| � 1

ZiU (s) : for frequencies where |ZoU/ZL| � 1

(1.27)

Figure 1.31 illustrates the construction of |ZiL| based on (1.27). Here, the magnitude
of the minor loop gain is projected as a magnitude boost in |ZiL|.

EXAMPLE 1.12 Input Impedance of Load-Coupled Boost Converter

This example shows the input impedance of the boost converter employed in the
previous dc power conversion system. Figure 1.32(a) shows the minor loop gains.
Figure 1.32(b) illustrates the input impedance the load-coupled boost converter.
The minor loop gain provides a magnitude boost for the input impedance in the
frequencies where |Tmn| = |ZoU/ZL| > 0 dB.

1.7 CHAPTER SUMMARY

The impacts of the load subsystem are completely determined by the two specific
impedances: the output impedance of the converter and the input impedance of the
load subsystem, namely, the load impedance.

• The ratio of the converter output impedance to the load impedance, referred to as
the minor loop gain Tmn(s), governs the stability of the converter at the presence
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Figure 1.32 Minor loop gain and input impedances of load-coupled boost converter. (a)
Minor loop gains. (b) Input impedances.

of the load subsystem. When the minor loop gain meets the Nyquist stability
criterion, the load-coupled converter is stable. Otherwise, the converter becomes
unstable after loading. The minor loop gain also dictates the performance of the
converter loop gain. For wide frequency range, the converter loop gain is given
by the inverse of the minor loop gain, TmL(s) ≈ 1/Tmn(s), thereby yielding
the same crossover frequency and phase margin as those of the minor loop gain.
Thus, the minor loop gain determines both the absolute and relative stabilities
of the converter.
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• The ratio of the converter output impedance to the load impedance, or minor
loop gain, reshapes the input impedance, loop gain, and output impedance
of the converter, thereby utterly changing the small-signal dynamics. The
overlap between the converter output impedance and load impedance is the key
factor that determines the pattern and amount of the changes in the closed-
loop performance. The impedance overlap is reflected as a dip in the audio-
susceptibility and output impedance. On the other hand, the impedance overlap
generates a boost in the input impedance. Nonetheless, these changes do not
result in the performance degradation, provided that the load subsystem is
properly designed.

Load-coupled converters will become unstable only if the impedance overlap
happens at low frequencies, where the load impedance behaves as a negative
resistance. For this case, the minor loop gain violates the Nyquist stability
criterion. However, the low-frequency impedance overlap hardly occurs in
practice when converters and filter stages are properly designed.

Modern dc power conversion systems employ several cascaded stages of con-
verters and filters, to achieve an efficient and reliable dc power distribution. The
individual converters are designed and fabricated separately without any prior infor-
mation about the system structure. When employed as a functional module in a dc
power conversion system, the individual converter will be affected by the source and
load subsystems, consisting of the other converters and filter stages in the system.
An individual converter, termed as the uncoupled converter in this book, usually
experiences substantial changes in the closed-loop performance and even crosses the
borderline between stability and instability.

This chapter provided a comprehensive study on the stability and performance of
the converter combined with the source and load subsystems in dc power conversion
systems. The results of Middlebrook’s EET, all established in Chapter 11, have been
used to investigate the impacts of the load and source subsystems.

There are two main causes which adversely affect the dynamics of the converter
combined with the source and load subsystems. The first cause is the constant power
load whose input impedance behaves as a negative resistance at low frequencies. The
converters themselves are the typical constant power load which can be the source of
instability. The second cause is the resonance among the reactive circuit components
in the converter and filter stages. The resonance produces a peaking/dipping in the
output/input impedance of the source subsystem, converter, and load subsystem. The
resonance intensifies the dynamic interaction between the source/load subsystem and
the converter stage. For the worst case, the peaking or dipping triggers unstable
oscillations when coupled with the negative input resistance of the converter stage.
For all cases, the peaking or dipping increases the degree of the dynamic interaction.
The escalated dynamic interaction generally makes the converter less stable and
deteriorates the closed-loop performance. However, for some cases, the dynamic
interaction does improve the stability and performance of the converter. As an
example, the load subsystem can be designed to stabilize an unstable input filter-
coupled converter, as demonstrated in Section 12.3.
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Although the source subsystem and load subsystem both stimulate the dynamic
interaction with the converter stage, the pattern and effects of the interactions are quite
different. The characteristic features of the interactions from the load subsystem and
the source subsystem are summarized below.

Load Subsystem Interaction The impacts of the load subsystem is completely
determined by the two specific impedances: the output impedance of the converter
and the input impedance of the load subsystem, namely, the load impedance.

• The ratio of the converter output impedance to the load impedance, referred to as
the minor loop gain Tmn(s), governs the stability of the converter at the presence
of the load subsystem. When the minor loop gain meets the Nyquist stability
criterion, the load-coupled converter is stable. Otherwise, the converter becomes
unstable after loading. The minor loop gain also dictates the performance of the
converter loop gain. For wide frequency range, the loop gain of the converter
is given by the inverse of the minor loop gain, TmL(s) ≈ 1/Tmn(s), thereby
yielding the same crossover frequency and phase margin as those of the minor
loop gain. Thus, the minor loop gain determines both the absolute and relative
stabilities of the converter.

• The impedance ratio, or minor loop gain, reshapes the input impedance, loop
gain, and output impedance of the converter, thereby utterly changing the small-
signal dynamics. The overlap between the converter output impedance and
load impedance is the key factor that determines the pattern and amount of the
changes in the closed-loop performance. The impedance overlap is reflected
as a dip in the audio-susceptibility and output impedance. On the other hand,
the impedance overlap generates a boost in the input impedance. Nonetheless,
these changes do not result in the performance degradation, provided that the
load subsystem is properly designed.

Load-coupled converters will become unstable only if the impedance overlap
happens at low frequencies, where the load impedance behaves as a negative
resistance, so that the equivalent loop violates the Nyquist stability criterion.
However, the low-frequency impedance overlap hardly occurs in practice when
converters and filter stages are properly designed.

Source Subsystem Interaction The impacts of the source subsystem can be
assessed by investigating the output impedance of the source subsystem and the input
impedances of the downstream converter. Here, the four different input impedances of
the converter are needed to completely describe the impacts of the source subsystem.
Thus, the source subsystem interaction is more complex than the load subsystem
case.

• The stability of the source-coupled converter is determined by the peak mag-
nitude of the output impedance of the source subsystem, |Zs|peak and the low-
frequency asymptote of the closed-loop input impedance of the converter, given
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by 20 log VS/IS . When |Zs|peak falls below 20 log VS/IS , the converter is
stable. Otherwise, the converter becomes unstable.

• The impacts of the source subsystem on the other performance criteria are gov-
erned by the relative magnitudes of Zs(s) and the open-loop input impedances
of the converter. The results of this analysis are summarized in Section 12.2.5,
which covered the input filter interaction. The outcomes of the input filter in-
teraction analysis can be directly extended to general load subsystems as far as
the the output impedance of the source subsystem is available.

• The source subsystem interaction is less influential than the load subsystem
interaction. Usually, the source subsystem partially modifies the closed-loop
performance of the converter. For example, the source subsystem only adds a
local dipping in the loop gain, leaving the crossover frequency and phase margin
unchanged. This situation is quite different from the load subsystem case where
the loop gain can be totally reshaped after loading.

This chapter provided detailed knowledge about the impacts of the load and source
subsystems on the stability and performance of the converter stage. The results of
this chapter can be used to analyze the dynamics of the converters employed in dc
power conversion systems. More importantly, the results are very useful in designing
and integrating the source and load subsystems for stable and efficient operation of
the entire dc power conversion system.

It should be emphasized that the output impedance of the source subsystem and
the input impedance of the load subsystem, which dictate the subsystem interactions
and system stability, are mainly decided by the filter stages. Accordingly, the filter
stage design is a critical element to secure the stability and performance of modern dc
power conversion systems. The filter stage design, in consideration of the subsystem
compatibility and system stability, will be covered in the next chapter.
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PROBLEMS

1.1** In Example 10.3 in Chapter 10, the modulator gain of the peak current mode
control was derived from the expression

ı̄L(t) = vcon − SedTs −
1

2
(Sn + Sf )d(1− d)Ts

with the assumption that the slopes of the inductor current remain unchanged.
Now, discard this assumption and introduce the perturbation to both Sn and Sf ,
in order to derive the feedforward gains from the input voltage/output voltage
to duty ratio. Show that the feedforword gains are given by

Buck converter: kf = −D(1−D)TsRi

2L
kr = 0

Boost converter: kf = 0 kr = −D(1−D)TsRi

2L

Buck/boost converter: kf = −D(1−D)TsRi

2L

kr = −D(1−D)TsRi

2L

The above expressions differ from those of Ridley’s model, but they coincide
with the feedforward gains of Tan’s model, as can be confirmed in Table 11.1.

1.2 Solve the expression (11.28)

1

Ri

1 + α

sTs

1 +
1

Ri

1 + α

sTs
RiHe(s)

=
1

Ri

1 + α

sTs

esTs − 1

esTs + α
with α =

Sf − Se

Sn + Se

in order to derive the expression for He(s) given in (11.19)

He(s) =
sTs

esTs − 1

1.3* Modify the procedures given in Example 11.5 to derive the expression for the
feedforward gain from the output voltage, given in (11.46)

k′r =
(1−D)2TsRi

2L
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1.4* The procedures for casting the control-to-output transfer function into the
third-order expression

Gvci(s) = Kvc

(
1− s

ωrhp

)(
1 +

s

ωesr

)
(

1 +
s

ωpl

)(
1 +

s

Qpωn
+
s2

ω2
n

)
are illustrated in Example 11.6.
a) Follow the procedures of Example 11.6 to derive the control-to-output

transfer function of the boost converter given in Table 11.3

Kvc =
D′R

2Ri

1

1 +
D′

3
RTs

2L
(mc − 0.5)

ωpl =
2

CR
+
TsD

′3

LC
(mc − 0.5)

ωrhp = D′
2R

L

Specify the restrictions for the power stage parameters and operational
conditions, which will improve the accuracy of the approximations.

b) Repeat a) for the buck/boost converter

Kvc =
D′R

(1 +D)Ri

1

1 +
D′

3
RTs

(1 +D)L
(mc − 0.5)

ωpl =
1 +D

CR
+
TsD

′3

LC
(mc − 0.5)

ωrhp =
D′

2

D

R

L

1.5** Adaption of the new design procedures to a buck converter was illustrated in
Example 11.8. Redesign the feedback controller for Qp = 0.4, while keeping
other design criteria unchanged. Compare the results of your design with those
of Example 10.8.

1.6* Redesign the boost converter used in Example 11.9 with Qp = 0.32, while
keeping other design criteria the same. Compare the outcomes of your design
with those of Example 10.16.

1.7* Example 11.11 proved the relationship

ωci

ωs
=
Qp

2
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for the buck converter. Show that the above relationship also holds true for the
boost and buck/boost converters.

1.8 Example 11.12 illustrated the relationship

Kvc ωpl ≈
Kvd

KidRi
ωid

for the buck converter. Verify that this relationship is also valid for the boost
and buck/boost converters. Specify the conditions that enhance the accuracy
of the approximation.

1.9* Figure P11.9 shows the off-line flyback converter with an optocoupler-isolated
peak current mode control. The switching frequency of the converter is ωs =
2π · 65 × 103 rad/s. Perform the control design to meet the specifications
of Qp = 0.8 and ωcr = 0.1ωrhp, while adapting the other design guidelines
practiced in Example 11.15. Specify values for {Rsense Rcom CC1 RD Cj}.

EMI
filter
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