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In the preceding chapters, we investigated the dynamics and control of standalone
converters operating with an ideal voltage source and resistive load. We now turn
our attention to the converters employed as a functional unit in generic dc power
distribution systems.

A dc power distribution system has a complex structure. It consists of a number of
cascaded/paralleled converters and filter stages. The operational environment of the
individual converters in such systems is quite different from the case of standalone
converters. Accordingly, we need new approaches to dealing with the converters in
dc power distribution systems.

In this chapter, we establish appropriate methodologies for the control design
and performance evaluation of the converters for dc power distribution applications.
We will demonstrate that the control design is the same as the case of standalone
converters with a resistive load. This rather surprising outcome leads to the following

1



i
i

i
i

i
i

i
i

2 Chapter 1 Uncoupled Converter and Extra Element Theorem

straightforward statement. The standard control design procedures developed earlier
for resistive loads are still applicable to the converters for dc power conversion
applications.

On the other hand, the performance evaluation requires a new approach, because
the converter dynamics in practical dc power distribution systems are too complex to
be handled with conventional analysis techniques. We employ Middlebrook’s extra
element theorem (EET) as an instrumental tool for this study. This chapter presents
general procedures for the dynamic analysis and performance evaluation based on
the EET. Comprehensive analyses using the proposed procedures will be given in the
next two chapters.

1.1 UNCOUPLED CONVERTER

This section introduces the idea of an uncoupled converter. Although simple in con-
cept, the uncoupled converter greatly simplifies the design problem of the individual
converters in dc power distribution systems.

1.1.1 Individual Converters in Dc Power Distribution Systems

Figure 1.1 depicts a common configuration of dc power distribution systems for data
processors/computers. The system consists of a front-end converter, load converters,
and intermediate filter stages. The front-end converter regulates the dc distribution
bus through the voltage feedback compensation, Fv(s). The load converters further
change the dc bus voltage into other values.

A filter stage is employed at the input port of both the front-end converter and load
converters. The input current of a PWM converter is either a pulsating waveform or
a triangular waveform, containing a substantial amount of harmonic components. If
the input current is directly drawn from the upstream side, large harmonic current
components circulate in the system. The harmonic current components in turn
produce excessive conducted electromagnetic interference (EMI), thereby failing to
meet regulatory EMI standards. To avoid such a situation, a filter stage is placed at
the input port of each individual converter converter. The filter stage locally bypasses
the ac component of the input current so that only the smoothly-filtered dc current
flows among the voltage source, front-end converter, and load converters.

In spite of the system complexity, all individual converters in Fig. 1.1 can be
portrayed by one equivalent representation. Referring to the front-end converter,
the formation of the equivalent representation is described as follows. The voltage
source and filter stage before the front-end converter are considered as the source
subsystem. Similarly, all the functional components after the front-end converter
are collectively denoted as the load subsystem. The front-end converter receives the
input voltage from the source subsystem and delivers a rated output current, iO, to
the load subsystem, while regulating the dc distribution bus.

Figure 1.2 shows the equivalent representation of the front-end converter. The
source subsystem is represented by the Thevenin’s form, consisting of an ideal voltage
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source, vS , and series impedance, Zs(s). The Zs(s) is the source impedance seen
by the front-end converter. On the other hand, the load subsystem is considered as a
non-ideal current sink, which absorbs a rated current, while presenting certain load
impedance ZL(s) to the front-end converter.

The equivalent representation can be used for the dynamic analysis and control
design of the front-end converter. For this purpose, the parameters of the source and
load subsystems should be identified. The source voltage vS and the output current iO
are always predefined. However, the source impedance Zs(s) and load impedance
ZL(s) are unknown or undefined until the actual source and load subsystems are
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4 Chapter 1 Uncoupled Converter and Extra Element Theorem
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all fabricated and integrated with the front-end converter. Thus, the control design
should be done without any knowledge about the source and load impedances.

1.1.2 Uncoupled Converter

To cope with the uncertainty in the source and load impedances, one can envisage a
converter which is directly connected to an ideal dc source and loaded with an ideal
current sink. The converter under such condition is shown in Fig. 1.3. The converter
is termed as the uncoupled converter in the sense that the converter is decoupled
from both the source subsystem and load subsystem in the small-signal point of view.
The uncoupled converter can be designed as a standalone unit and tested using a dc
source and current sink. In other words, we perform the design and verification of
the converter in the absence of any knowledge about the source and load impedances.

Whenever the information about the source impedance and load impedance is
available, we predict the converter performance in the real operation. This analysis
will be done using Middlebrook’s extra element theorem (EET). The EET allows us
to evaluate the converter performance in the presence of Zs(s) and ZL(s), based on
the predictions of the uncoupled converter and characteristics of Zs(s) and ZL(s)
without analyzing the system all over again.

The converters in dc power distribution systems are treated as an uncoupled
converter and designed independently from the unknown Zs(s) and ZL(s). When
the characteristics of Zs(s) and ZL(s) are known, the converter performance will be
evaluated based on Middlebrook’s EET.

1.2 POWER STAGE DYNAMICS AND CONTROL DESIGN OF UNCOU-
PLED CONVERTER

We first investigate the power stage dynamics of uncoupled converters and later
address the control design issue. The three basic converters with peak current mode
control are considered. This section starts with the uncoupled buck converter.
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1.2.1 Uncoupled Buck Converter

Figure 1.4 shows the circuit diagram and small-signal model of an uncoupled buck
converter with current mode control. The converter is powered from an ideal voltage
source and loaded with a current sink, as shown in Fig. 1.4(a). Referring to the small-
signal model in Fig. 1.4(b), Ri is the gain of the current sensing network (CSN) and
Fv(s) represents the voltage feedback compensation. The expressions for the other
gain blocks are given in Table ??.

Discussions about the uncoupled buck converter are given in parallel with the case
of the buck converter coupled with a resistive load. The converter with a resistive
load is referred to as the resistor-loaded converter.

Power Stage Dynamics

Although the small-signal model of the uncoupled converter is largely the same as
that of the resistor-loaded buck converter, there are some notable facets in Fig. 1.4(b).
The ideal current sink presents an infinite load impedance, ZL(s) = ∞. Therefore,
the power stage is terminated with the filter capacitor in series with its esr. Yet, the
output current IO flowing into the current sink is incorporated into the power stage
model as a resistive parameter

RDC =
VO
IO

(1.1)

where VO is the output voltage and IO is the output current delivered to the current
sink. This resistive load parameter is termed as the dc load parameter, RDC .

The average inductor current is determined as IL = IO = VO/RDC for the buck
converter. The dependent source in the PWM switch model, which was originally
denoted as ILd̂ in the previous chapters, is now expressed as (VO/RDC)d̂. The
current sink load renders the load impedance infinite, ZL(s) =∞, but it still affects
the power stage dynamics through the dc load parameter, RDC = VO/IO.

From the small-signal model with the condition v̂s(s) = ı̂o(s) = 0, the duty
ratio-to output transfer function is determined as

Gvd(s) =
v̂o(s)

d̂(s)
= Kvd

1 +
s

ωesr

1 +
s

Qωo
+
s2

ω2
o

(1.2)

with
Kvd = VS (1.3)

ωesr =
1

CRc
(1.4)

ωo =

√
1

LC
(1.5)
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Figure 1.4 Uncoupled buck converter. (a) Circuit diagram. (b) Small-signal model.

and

Q =
1

Rl +Rc

√
C

L
(1.6)

The duty ratio-to-inductor current transfer function is evaluated as

Gid(s) =
ı̂L(s)

d̂(s)
= Kid

s

1 +
s

Qωo
+
s2

ω2
o

(1.7)

with
Kid = VSC (1.8)
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When the transfer functions Gvd(s) and Gid(s) are assessed with the condition
v̂s(s) = 0, the dependent current source (VO/RDC)d̂ is shorted and does not come
into the power stage dynamics. Accordingly, the resistive load parameter RDC does
not appear in the Gvd(s) and Gid(s) expressions. This is the unique feature of the
buck converter, which is not the case for the other converter topologies. For the
boost and buck/boost converters,RDC emerges as a key parameter in theGvd(s) and
Gid(s) expressions.

Control-to-Output Transfer Function with Current Loop Closed

Under the condition that the current loop is closed while the voltage loop is opened,
the control-to-output transfer function is derived from Fig. 1.4(b)

Gvci(s) =
v̂o(s)

v̂con(s)
=

F ∗m
v̂o(s)

d̂(s)

1− krF ∗m
v̂o(s)

d̂(s)
+RiHe(s)F ∗m

ı̂L(s)

d̂(s)

(1.9)

By following the procedures illustrated in Example ??, the transfer function is casted
into the following third-order approximation

Gvci(s) ≈ Kvc

1 +
s

ωesr(
1 +

s

ωpl

)(
1 +

s

Qpωn
+
s2

ω2
n

) (1.10)

with

ωesr =
1

CRc
(1.11)

Qp =
1

π

((
1 +

Se

Sn

)
D′ − 0.5

) (1.12)

and
ωn =

π

Ts
(1.13)

The structure of the transfer function and the expressions for Qp and ωn are
identical to those of Example ?? which dealt with a resistor-loaded buck converter.
On the other hand, the expressions for Kvc and ωpl are given by

Kvc =
L

Ri

1

Ts(mcD′ − 0.5)
(1.14)

and

ωpl =
Ts(mcD

′ − 0.5)

LC
(1.15)
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with

mc = 1 +
Se

Sn
(1.16)

where Se is the slope of the compensation ramp and Sn is the slope of the sensed
on-time inductor current.

Control Design

The power stage transfer functions of the uncoupled buck converter are different
from those of the resistor-loaded buck converter. Nonetheless, as far as the control
design is concerned, the uncoupled converter becomes the same as the resistor-loaded
converter for the following reasons.

First, the criteria for the current loop design remain unchanged because the current
loop always aims to properly damp the second-order term in the control-to-output
transfer function. Second, the voltage loop design is based on the control-to-output
transfer function Gvci(s). Due to the same Gvci(s) structure in the uncoupled and
resistor-loaded converters, the two-pole one-zero compensation, originally used for
the resistor-loaded converter,

Fv(s) =

Kv

(
1 +

s

ωzc

)
s

(
1 +

s

ωpc

) (1.17)

is also employed to the uncoupled buck converter. The guidelines for selecting
the compensation pole, compensation zero, and integrator gain are unaltered. In
particular, the integrator gain Kv is selected as

Kv =
ωzc ωcr

Kvc ωpl
(1.18)

where ωzc is the desired frequency of the compensation zero and ωcr is the aimed
loop gain crossover frequency. Because the selections of ωzc and ωcr are the same
for the two converters, Kv will be identical if the product of Kvc and ωpl remains
invariant. For the uncoupled converter, it follows that

Kvcωpl =
L

Ri

1

Ts(mcD′ − 0.5)︸ ︷︷ ︸
Kvc

Ts(mcD
′ − 0.5)

LC︸ ︷︷ ︸
ωpl

=
1

RiC
(1.19)
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Figure 1.5 Loop gain characteristics of uncoupled and resistor-loaded converters

On the other hand, referring to Table ??, the product of Kvc and ωpl for the resistor-
loaded converter is given by

Kvcωpl =
R

Ri

1

1 +
RTs
L

(mcD
′ − 0.5)︸ ︷︷ ︸

Kvc

1

CR

(
1 +

RTs
L

(mcD
′ − 0.5)

)
︸ ︷︷ ︸

ωpl

=
1

RiC
(1.20)

The above analysis indicates that the voltage loop design for the uncoupled converter
is the same as that of the resistor-loaded converter.

Now, the current loop and voltage loop designs proved to be identical for the
uncoupled and resistor-loaded converters. Thus,the control design for uncoupled
buck converters could adopt the standard design procedure intended for the resistor-
loaded converters.

Performance of Uncoupled Buck Converter EXAMPLE 1.1

This example shows the utility of the preceding analysis using the current-mode
controlled buck converter cited in Example 10.9. The converter regulates the output
voltage at 4 Volts and loaded with a 1 Ω resistor. The original converter is referred
to as the resistor-loaded converter. The uncoupled converter is formed by replacing
the load resistor with a 4 Amps current sink, while using the same control design.
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Figure 1.6 Output impedance and audio-susceptibility of uncoupled and resistor-loaded
converters. (a) Output impedance. (b) Audio-susceptibility.

The loop gains of the two converters are shown in Fig. 1.5. While the two loop
gains show some deviations at low frequencies, they have the same crossover fre-
quency, phase margin, and gain margin. Figure 1.6 compares the output impedance
and audio-susceptibility of the two converters. The transfer functions are almost
identical.

Section Summary

The power stage dynamics of the uncoupled buck converter differ from those of the
resistor-loaded buck converter. Nevertheless, the procedure and final result of the
control design are the same in the two converters. Accordingly, the standard control
design procedures, developed for resistive loads in the earlier chapters, are applicable
to uncoupled buck converters without any modifications. As will be shown in later
sections, this conclusion is also valid for all PWM converters with current mode
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Figure 1.7 Uncoupled boost converter with peak current mode control. (a) Circuit diagram.
(b) Small-signal model.

control or voltage mode control. The outcome of this section supports the validity
and utility of the conventional control design which assumes that the converter is
connected to a resistive load.

1.2.2 Uncoupled Boost Converter

This section deals with the uncoupled boost converter. Figure 1.7 shows the circuit
diagram and small-signal model of the uncoupled boost converter employing peak
current mode control. The expressions for the small-signal gain blocks in Fig. 1.7(b)
are given in Table ??.

The dependent current source in the PWM switch model is determined as
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ILd̂ =
IO
D′
d̂ =

VO
RDCD′

d̂ (1.21)

where RDC = VO/IO is the dc load parameter.

Power Stage Dynamics

From the small-signal model with the condition v̂s(s) = ı̂o(s) = 0, the duty ratio-to
output transfer function is evaluated as

Gvd(s) =
v̂o(s)

d̂(s)
= Kvd

(
1− s

ωrhp

)(
1 +

s

ωesr

)
1 +

s

Qωo
+
s2

ω2
o

(1.22)

with

Kvd =

VS

(
1− Rl

RDCD′
2

)
D′2

≈ VS

D′2
(1.23)

ωesr =
1

CRc
(1.24)

ωrhp =
RDCD

′2 −Rl

L
≈ RDCD

′2

L
(1.25)

ωo = D′
√

1

LC
(1.26)

and

Q =
D′

Rl +RcD′
2

√
C

L
(1.27)

The duty ratio-to-inductor current transfer function is determined as

Gid(s) =
ı̂L(s)

d̂(s)
= Kid

1 +
s

ωid

1 +
s

Qωo
+
s2

ω2
o

(1.28)

with
Kid =

VS

RDCD′
3 (1.29)

and
ωid =

1

C(RDC +Rc)
≈ 1

CRDC
(1.30)

Unlike the case of the uncoupled buck converter whereRDC does not appear in the
transfer functions, RDC is a key parameter in the transfer functions of the uncoupled
boost converter. In particular,RDC determines the right-half plane (RHP) zero, ωrhp

in (1.25), in the duty ratio-to-output transfer function.
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Control-to-Output Transfer Function with Current Loop Closed

The same as the uncoupled buck converter case, the control-to-output transfer function
with the current loop closed is approximated into a third-order polynomial

Gvci(s) ≈ Kvc

(
1− s

ωrhp

)(
1 +

s

ωesr

)
(

1 +
s

ωpl

)(
1 +

s

Qpωn
+
s2

ω2
n

) (1.31)

with

ωrhp =
RDCD

′2

L
(1.32)

Kvc =
L

Ri

1

TsD′
2(mc − 0.5) +

L

RDCD′

(1.33)

and

ωpl =
TsD

′2(mc − 0.5) +
L

RDCD′

LC

D′

(1.34)

The other parameters of the transfer function are identical to those of the uncoupled
buck converter.

Compensation Design

The control design of the uncoupled boost converter is the same as the case of the
resistor-loaded boost converter.

1) For both the uncoupled and resistor-loaded boost converters, the integrator gain
of the voltage feedback compensation is chosen as

Kv =
ωzcωcr

Kvcωpl
(1.35)

2) For the uncoupled converter, the product of Kvc and ωpl is given by

Kvcωpl =
D′

CRi
(1.36)

from (1.33) and (1.34).

3) Referring to Table ??, Kvc and ωpl for the resistor-loaded converter are given
by

Kvc =
L

Ri

1

TsD′
2(mc − 0.5) +

2L

RD′

(1.37)
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Figure 1.8 Loop gain characteristics of uncoupled boost converter.

and

ωpl =
TsD

′2(mc − 0.5) +
2L

RD′

LC

D′

(1.38)

This indicates the product of Kvc and ωpl for the resistor-loaded converter is
also given by (1.36). Thus, the control design for the two converter cases is
identical.

EXAMPLE 1.2 Performance of Uncoupled Boost Converter

Figures 1.8 and 1.9 show the performance of the uncoupled boost converter. The
boost converter in Example ?? is revisited in this example. The same operational
conditions and circuit parameters are employed, but the converter is loaded with an
ideal current sink.

The loop gain is displayed in Fig. 1.8. The loop gain crosses the 0 dB line at ωc =
2π · 400 rad/s with a phase margin of 55◦. Figure 1.9 shows the output impedance
of the uncoupled boost converter. The output impedance shows a peaking around
the crossover frequency of the loop gain. At high frequencies, the output impedance
settles at the high-frequency asymptote of 20 logRc = 20 log 0.05 = −26 dB.
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Figure 1.9 Output impedance uncoupled boost converter.

1.2.3 Uncoupled Buck/Boost Converter

The results of the previous two sections are be extended to the uncoupled buck/boost
converter operating with peak current mode control.

The duty ratio-to output transfer function of the uncoupled buck/boost converter
is given by

Gvd(s) =
v̂o(s)

d̂(s)
= Kvd

(
1− s

ωrhp

)(
1 +

s

ωesr

)
1 +

s

Qωo
+
s2

ω2
o

(1.39)

with

Kvd =

VS

(
1− RlD

RDCD′
2

)
D′2

≈ VS

D′2
(1.40)

ωesr =
1

CRc
(1.41)

ωrhp =
RDCD

′2 −RlD

DL
≈ RDCD

′2

DL
(1.42)

ωo = D′
√

1

LC
(1.43)

and

Q =
D′

Rl +RcD′
2

√
C

L
(1.44)
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The duty ratio-to-inductor current transfer function is evaluated as

Gid(s) =
ı̂L(s)

d̂(s)
= Kid

1 +
s

ωid

1 +
s

Qωo
+
s2

ω2
o

(1.45)

with

Kid =
DVS

RDCD′
3 (1.46)

and

ωid =
D

C(RDC +Rc)
≈ D

CRDC
(1.47)

The control-to-output transfer function with the current loop closed is determined
as

Gvci(s) ≈ Kvc

(
1− s

ωrhp

)(
1 +

s

ωesr

)
(

1 +
s

ωpl

)(
1 +

s

Qpωn
+
s2

ω2
n

) (1.48)

with

ωrhp =
RDCD

′2

DL
(1.49)

Kvc =
L

Ri

1

TsD′
2(mc − 0.5) +

DL

RDCD′

(1.50)

and

ωpl =
TsD

′2(mc − 0.5) +
DL

RDCD′

LC

D′

(1.51)

The product of the parameters Kvc and ωpl is given by

Kvcωpl =
D′

CRi
(1.52)

As is the case of the buck and boost converters, (1.52) is equally valid to the
resistor-loaded converter. Therefore, the control design for an uncoupled buck/boost
converter is the same as that of the resistor-loaded converter. Furthermore, this
conclusion is extended to the converters loaded with an arbitrary load impedance.
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1.3 COUPLED CONVERTERS AND MIDDLEBROOK’S EXTRA ELEMENT
THEOREM

The previous section covered the dynamic analysis and control design of uncoupled
converters. An uncoupled converter was treated as a standalone functional unit.
However, in real dc power conversion applications, converters always operate together
with the source subsystem and load subsystem. The coupled converter with the source
and load subsystems is referred to as a coupled converter.

The performance of a coupled converter is usually affected by the load and source
impedances. The objective of this section is to develop an analytic method for in-
vestigating the performance of coupled converters. We assume that an uncoupled
converter is properly designed and its performance is validated. We further postu-
late that the impedance characteristics of the source and load subsystems are now
available. Based on these assumptions, we will establish a systematic approach
to predicting the performance of the converter coupled with the source and load
subsystems.

An ideal instrumental tool for the dynamic analysis of coupled converters is the
extra element theorem (EET). The EET shows how a transfer function is altered by
the addition of an extra element to the original system. In other words, the theorem
allows one to determine the effects of the extra element on any transfer function of
interest, without solving the system all over again. For example, the loop gain of
the converter combined with an actual load subsystem can be determined from the
loop gain of the uncoupled converter and the impedance characteristics of the load
subsystem − the load impedance.

This section first presents the EET in its simplest form along with its proof. Second,
the EET is applied to the converter combined with a load subsystem, resulting in the
equations for the converter performance in the presence of the load impedance. The
EET is then adapted to the converter coupled with a non-ideal voltage source. The
results show the impacts of the source impedance on the converter performance.
Lastly, this section discusses how to use the EET to evaluate the performance of
converters coupled with an actual source subsystem and also connected to a real load
subsystem.

The aim of this section is to present the analytical basis for the performance eval-
uation of coupled converters. Comprehensive dynamic analyses using the proposed
method will be separately treated in the next two chapters.

1.3.1 Middlebrook’s Extra Element Theorem

This section briefly describes the expression, proof, and examples of the EET. The
EET was originally introduced in [1] and [2] by R. D. Middlebrook. In a later
reference [3], V. Vorpérion documented the theorem in a textbook format, along with
numerous examples. Some applications of the EET to the PWM converter analysis
were reported in [4]-[8].
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Figure 1.10 Pictorial illustration of extra element theorem. (a) Transfer function of interest.
(b) Open-circuit transfer gain. (c) Driving point impedance. (d) Null driving point impedance.

Extra Element Theorem

The extra element theorem (EET) states that any transfer gain of an arbitrary network
can be expressed as a bilinear function of the impedance of any one of its components.
Figure 1.10 is a pictorial illustration of the EET. The transfer gain H(s) of a linear
network is defined in Fig. 1.10(a). The EET expresses the transfer gain H(s) as

H(s) =
uo(s)

ui(s)
= H∞(s)

1 +
ζ̄(s)

Z(s)

1 +
z̄(s)

Z(s)

(1.53)

where ui(s) is the input variable, uo(s) is the output variable, and Z(s) represents
the impedance of the specific circuit component that exists across the a− a′ branch
and is designated as the extra element. The other transfer functions in the expression
(1.53) are described below and illustrated in Figs. 1.10(b) through 1.10(d).

1) H∞(s) is the open-circuit transfer gain, which corresponds to the transfer gain
H(s) evaluated with the extra element removed, namely the a − a′ branch is
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Figure 1.11 Network representations. (a) Original representation. (b) Alternative
representation.

open-circuited: H∞(s) = uo(s)/ui(s)Z(s)=∞. This transfer gain is illustrated
in Fig. 1.10(b).

2) z̄(s) is the driving point impedance, which represents the input impedance
looking into the a− a′ branch under the condition that the input of the transfer
gain is disabled: ui(s) = 0. Referring to Fig. 1.10(c), this impedance is
described as z̄(s) = V (s)/I(s)ui(s)=0

3) ζ̄(s) represents the null driving point impedance, which is the input impedance
looking into the a− a′ branch under the following specific operational circum-
stance. Referring to Fig. 1.10(d), the null driving point impedance is evaluated
when the output variable uo(s) is nullified by exciting the network with the two
specially-selected variables of u′i(s) and I ′(s): i.e., uo(s) = 0 when ui(s) =
u′i(s) and I(s) = I ′(s). In Fig. 1.10(d), the null driving point impedance is
defined as ζ̄(s) = V ′(s)/I ′(s)uo(s)=0

The EET is a very powerful and versatile means to study transfer functions of
complex networks. As one important application, the EET is used to evaluate the
transfer function under the circumstance that the transfer gain of the initial network
is known and an extra component is added to the network afterwards. For example,
the transfer gain of the converter connected to a current sink, thus with the condition
Z(s) = ∞, is already analyzed in the previous section. Now, the current sink is
replaced with a practical load with a certain load impedance, thus Z(s) 6= ∞. For
this case, we utilize the EET of (1.53) to find the expression for the transfer gain,
H(s), in the presence of Z(s). With the known H∞(s) and Z(s), we only need to
evaluate the driving point impedance z̄(s) and the null driving point impedance ζ̄(s),
which is usually a straightforward process.

Proof of EET

This section provides the proof of the EET. The network representation in Fig.
1.10(a) is repeated in Fig. 1.11(a), where the terminal current I(s) and terminal
voltage V (s) are the circuit variables associated with the impedance element Z(s).
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The terminal voltage and current of the impedance element are linked by the equation
I(s) = −V (s)/Z(s). Figure 1.11(a) is redrawn in Fig. 1.11(b) using this relationship.

By considering ui(s) and I(s) as the input variables and uo(s) and V (s) as the
output variables, the circuit equations for Fig. 1.11(b) are written as

uo(s) = a11ui(s) + a12I(s)

V (s) = a21ui(s) + a22I(s) (1.54)

with
V (s) = −I(s)Z(s) (1.55)

Referring to the expression (1.54), the coefficient a11 = uo(s)/ui(s)I(s)=0 is the
transfer gain evaluated with the conditionZ(s)→∞ (or the branch a−a′ is opened)
so that I(s) = 0. This indicates the coefficient a11 is the open-circuit transfer gain
cited in (1.53): a11 = H∞(s). Similarly, the coefficient a22 = V (s)/I(s)ui(s)=0 is
recognized as the driving point impedance z̄(s) defined in (1.53): a22 = z̄(s).

We desire to find the expression for the transfer gain, H(s) = uo(s)/ui(s). By
solving (1.54) and (1.55) simultaneously, the transfer gain is determined as

H(s) =
uo(s)

ui(s)
= a11

1 +
a11a22 − a12a21

a11

1

Z(s)

1 +
a22
Z(s)

(1.56)

Now, we evaluate the composite coefficient, (a11a22−a12a21)/a11, emerging in the
numerator of (1.56). For this purpose, we now assume that the two input variables,
ui(s) and I(s), are specially adjusted so that the output variable uo(s) becomes null,
uo(s) = 0. With this operational constraint, the equation (1.54) becomes

0 = a11ui(s) + a12I(s)

V (s) = a21ui(s) + a22I(s) (1.57)

Equations (1.57) are solved to yield the following relationship

V (s)

I(s) uo(s)=0

=
a11a22 − a12a21

a11
(1.58)

which states that the composite coefficient (a11a22−a12a21)/a11 is actually the null
driving point impedance ζ̄(s) cited in (1.53).

By correlating (1.53) and (1.56) with the knowledge a11 = H∞(s), a22 = z̄(s),
and (a11a22 − a12a21)/a11 = ζ̄(s), the EET in (1.53) becomes self-evident.

Comments on Null Driving Point Impedance: The evaluation of the null
driving point impedance ζ̄(s) may seem difficult. But, in reality, the null driving
point impedance is determined very simply and is the easiest transfer function among
the transfer functions involved with the EET in (1.53). When evaluating the null
driving point impedance, we assume that the network variables are forced to take the
specific values that produce the zero output. This constraint greatly simplifies the
analysis, as will be shown in the next section.
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Figure 1.12 Small-signal model of MOSFET amplifier. (a) Small-signal model without
Cgd. (b) Small-signal model with Cgd. (c) Small-signal model for evaluation of z̄(s). (d)
Small-signal model for evaluation of ζ̄(s).

EET Application Example

An easy application of the EET is illustrated using a MOSFET amplifier. Figure
1.12(a) is the small-signal model of a simple MOSFET amplifier, where the parasitic
capacitance between the gate and source terminals, Cgs, is considered but the gate-
drain terminal capacitance is not considered, thus Cgd = 0 or 1/(sCgd) = ∞. The
input-to-output voltage gain is given as

vo(s)

vi(s)
= −gmro (1.59)

Now, the gate-drain terminal capacitance, Cgd, is included to the MOSFET. Figure
1.12(b) depicts the small-signal model of the amplifier, where Cgd is considered as
an extra element. The EET given by (1.53) is invoked to find the voltage gain in the
presence of Cgd. With the recognition of vo(s)/vi(s)Z(s)=∞ = H∞(s) = −gmro
where Z(s) = 1/(sCgd), the expression (1.53) is written as

H(s) =
vo(s)

vi(s) Z(s)6=∞
= −gmro

1 + sCgd ζ̄(s)

1 + sCgd z̄(s)
(1.60)

for the voltage gain of the MOSFET amplifier. Figure 1.12(c) is the small-signal
model of the amplifier, modified to derive the driving point impedance, z̄(s), seen by
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Cgd with vi(s) = 0. The driving point input impedance is given by

z̄(s) = ro (1.61)

The derivation of the null driving point impedance is illustrated in Fig. 1.12(d).
Here, the condition vo(s) = 0 is obtained by exciting the amplifier with the two
specially-selected signals, vi(s) and iT (s). The null driving point impedance, ζ̄(s),
is expressed as

ζ̄(s) =
vT (s)

iT (s) vo(s)=0

(1.62)

The condition vo(s) = 0 in Fig. 1.12(d) implies the following two facts

i) vo(s) = 0 ⇒ io = 0 ⇒ iT = gmvgs,

ii) vo(s) = 0 ⇒ vT = −vgs

The null driving point impedance is now evaluated as

ζ̄(s) =
vT (s)

iT (s) vo(s)=0

=
−vgs
gmvgs

= − 1

gm
(1.63)

The expression for the voltage gain in the presence of Cgd is determined as

H(s) = −gmro
1− sCgd

gm
1 + sCgdro

(1.64)

For this simple example, the vi(s) and iT (s) that establish the output-variable
nullifying condition, vo(s) = 0, can be easily found. When the current source iT (s) is
selected as iT (s) = gmvi(s) for an arbitrary vi(s), the output current io(s) becomes
zero, thereby forcing the output voltage to be null, vo(s) = 0: namely, iT (s) =
gmvi(s) → io(s) = 0 → vo(s) = 0. However, the knowledge of this output-
variable nullifying condition is not needed to find the null driving point impedance
ζ̄(s). We just assumed that the output voltage is forced to be zero and exploited this
fact to find ζ̄(s).

Alternative Form of EET

The original EET given by (1.53) can be reformulated into an alternative form

H(s) = H∞(s)

1 +
ζ̄(s)

Z(s)

1 +
z̄(s)

Z(s)

= H∞(s)
Z(s) + ζ̄(s)

Z(s) + z̄(s)

= H∞(s)
ζ̄(s)

z̄(s)

1 +
Z(s)

ζ̄(s)

1 +
Z(s)

z̄(s)

(1.65)
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When the expression (1.65) is evaluated with the extra element shorted so that
Z(s) = 0, it follows that

H(s)Z(s)=0 = H∞(s)
ζ̄(s)

z̄(s)
(1.66)

Accordingly, the first term in (1.65) is interpreted as the transfer gain assessed under
the condition that the extra element is shorted

H∞(s)
ζ̄(s)

z̄(s)
= H(s)Z(s)=0 = H0(s) (1.67)

The alternative EET in (1.65) is rewritten as

H(s) = H0(s)

1 +
Z(s)

ζ̄(s)

1 +
Z(s)

z̄(s)

(1.68)

where H0(s) is the transfer gain calculated with the extra element shorted.
The alternative EET in (1.68) is also very useful in analyzing the performance

of coupled converters. For example, we analyzed the performance of the converter
with an ideal voltage source, thus assuming the zero source impedance: Z(s) = 0.
When the ideal voltage source is replaced with a practical source with a finite output
impedance, Z(s) 6= 0, the alternative EET in (1.68) can be adopted.

Extension of Extra Element Theorem

The EET can be extended to more complex networks by designating multiple compo-
nents as extra elements and sequentially applying the EET in a nested manner. Figure
1.13 illustrates the procedures of analyzing a complex network by two consecutive
adoptions of the EET. We intend to derive the transfer gain, H(s) = uo(s)/ui(s),
of the network in Fig. 1.13(a). The two impedance elements in Fig. 1.13(a), Z1(s)
and Z2(s), are assigned as the extra elements. In reference to Fig. 1.13(a), a reduced
model in Fig. 1.13(b) is obtained by shorting Z1(s) and opening Z2(s): Z1(s) = 0
and Z2(s) =∞.

The transfer gain of the reduced model is denoted as

uo(s)

ui(s) Z1(s)=0 Z2(s)=∞
= Hs(s) (1.69)

The transfer gainHs(s) is much easier to evaluate, compared with the original transfer
gain.

Next, the reduced model of Fig. 1.13(b) is converted into Fig. 1.13(c) by restoring
the impedance element Z2(s) while keeping Z1(s) shorted. Referring to (1.53), the
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Figure 1.13 Application of EET for two extra elements. (a) Original network. (b) Reduced
network. (c) Partially restored network. (d) Fully restored network.

transfer gain of Fig. 1.13(c) is determined as

uo(s)

ui(s) Z1(s)=0 Z2(s)6=∞
= Hs(s)

1 +
ζ̄2(s)

Z2(s)

1 +
z̄2(s)

Z2(s)

(1.70)

where ζ̄2(s) is the null driving point impedance seen by Z2(s) under the condition
Z1(s) is shorted. Similarly, z̄2(s) is the driving point impedance seen by Z2(s) with
Z1(s) shorted.

As the last step, the original network is fully restored as shown in Fig. 1.13(d) by
reinstating Z1(s). The EET in (1.68) is now applied to Fig. 1.13(d) to yield

uo(s)

ui(s) Z1(s) 6=0 Z2(s)6=∞
=

Hs(s)

1 +
ζ̄2(s)

Z2(s)

1 +
z̄2(s)

Z2(s)


1 +

Z1(s)

ζ̄1(s)

1 +
Z1(s)

z̄1(s)

 = H(s) (1.71)

where ζ̄1(s) is the null driving point impedance seen byZ1(s) whenZ2(s) is present.
On the other hand, z̄1(s) is the driving point impedance seen by Z1(s) with the same
condition.

The final expression of (1.71) is referred to as the 2-EET in the previous publi-
cation [3]. The 2-EET can be utilized to investigate the performance of converters,
connected to a real source and practical load. We already analyzed the converters
operating with an ideal voltage source and current sink load, which corresponds to
the reduced network in Fig. 1.13(b). The performance of the uncoupled converters
can be transformed to that of the coupled converters, which is represented by the
restored network in Fig. 1.13(d), by applying (1.70) and (1.71) in sequence.
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Figure 1.14 Small-signal models of uncoupled converter.

Prolific Feature of EET: The analysis of complex networks can be simplified
by designating an impedance component as the extra element and applying the EET.
The application of EET will be further extended by assigning multiple impedance
components as extra elements. The EET was extended to the 2-EET in this section.
This procedure can be repeated to yield an n-EET to deal with n extra elements.
This prolific feature of the EET is the distinctive advantage in analyzing dc power
conversion systems, where converters and filter stages are first designed as standalone
modules and later integrated together to function as an integrated system. The
EET provides systematic analysis procedures for otherwise intractable dc power
conversion systems.

1.3.2 Performance of Coupled Converter

In the previous section, we studied Middlebrook’s extra element theorem as a general
network analysis tool. Now, the results of the previous section are adopted to
investigate the performance of coupled converters. First, we derive the transfer
functions of converters coupled with a practical load. Second, the performance of
converters powered by a non-ideal voltage source is analyzed. Lastly, the transfer
functions of converters combined with both practical load and non-ideal source are
discussed.

Figure 1.14 shows the small-signal model of the uncoupled converter. The sub-
script U in the transfer functions signify the uncoupled conditions, Zs(s) = 0 and
ZL(s) =∞. Using Fig. 1.14 as a reference, this section employs the EET to express
the performance of coupled converters.

Load-Coupled Converters

The converter coupled with a general load subsystem, but still powered from an
ideal voltage source, is denoted as the load-coupled converter. The small-signal
block diagram of load-coupled converters is shown in Fig. 1.15(a), where the load
impedance ZL(s) is treated as an extra element. For the application of the EET,
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Figure 1.15 Small-signal block diagrams of PWM converter connected to load impedance.
(a) Original block diagram. (b) Modified block diagram for EET application.

the block diagram is modified to Fig. 1.15(b). The summing junction in the voltage
feedback path is needed for the loop gain analysis.

By applying the EET in (1.53) to Fig. 1.15(b), the audio-susceptibility is expressed
as

AuL(s) =
v̂o(s)

v̂s(s)ZL 6=∞ ûinj=0 ı̂o=0

= AuU (s)

1 +
ζ̄ ′L(s)

ZL(s)

1 +
z̄′L(s)

ZL(s)

(1.72)

The subscript L in AuL(s) signifies the presence of the load impedance ZL(s).
The null driving point impedance ζ̄ ′L(s) = vT (s)/iT (s) v̂o=0 becomes zero because
the null condition v̂o(s) = 0 implies vT (s) = 0: ζ̄ ′L(s) = 0. The driving point
impedance z̄′L(s) = vT (s)/iT (s)v̂s=o is the output impedance of the uncoupled
converter: z̄′L(s) = ZoU (s). The final expression of the audio-susceptibility then
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becomes

AuL(s) = AuU (s)
1

1 +
ZoU (s)

ZL(s)

(1.73)

Similarly, it can be shown that the output impedance of the converter is given by

ZoL(s) =
v̂o(s)

ı̂o(s) ZL 6=∞ ûinj=0 v̂s=0

= ZoU (s)
1

1 +
ZoU (s)

ZL(s)

(1.74)

The input impedance of the converter is expressed as †

ZiL(s) =
v̂s(s)

ı̂s(s) ZL 6=∞ ûinj=0 ı̂o=0

= ZiU (s)

1 +
ζ̄ ′′L(s)

ZL(s)

1 +
z̄′′L(s)

ZL(s)

(1.75)

The null driving point impedance ζ̄ ′′L(s) = vT (s)/iT (s)v̂s=0 is the output impedance
of the uncoupled converter: ζ̄ ′′L(s) = ZoU (s). On the other hand, the driving point
impedance z̄′′L(s) = vT (s)/iT (s) ı̂s=0 is the output impedance of the uncoupled
converter, determined with the input port opened. This driving point impedance is
denoted as Z ′o(s). The input impedance is now given by

ZiL(s) = ZiU (s)

1 +
ZoU (s)

ZL(s)

1 +
Z ′o(s)

ZL(s)

(1.76)

For the loop gain evaluation, the signal source ûinj(s) at the summing junction is
activated. The loop gain is defined as

TmL(s) = − ûy(s)

ûx(s)ZL 6=∞ v̂s=0 ı̂o=0

= TmU (s)

1 +
ζ̄ ′′′L (s)

ZL(s)

1 +
z̄′′′L (s)

ZL(s)

(1.77)

The null driving point impedance ζ̄ ′′′L (s) = vT (s)/iT (s)ûy=0 is zero because the
condition ûy(s) = 0 implies vT (s) = 0. The driving point impedance z̄′′′(s) =
vT (s)/iT (s) ûx=0 corresponds to the output impedance the uncoupled converter,

†Theoretically, the equation should be formulated using the input admittance, YiL(s) = 1/ZiL(s) =
ı̂s(s)/v̂s(s), because the input variable of dc-to-dc converters is v̂s(s) not ı̂s(s). However, the formulation
using YiL(s) transforms to (1.75) when the final result is rearranged for ZiL(s).
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evaluated with the voltage feedback loop opened. Thus, z̄′′′L (s) becomes the open-
loop output impedance of the uncoupled converter.

It is well known that the following relation holds among the open-loop output
impedance z̄′′′L (s), closed-loop output impedance ZoU (s), and loop gain TmU (s) of
the uncoupled converter

ZoU (s) =
z̄′′′L (s)

1 + TmU (s)
(1.78)

which is rearranged as

z̄′′′L (s) = ZoU (s)
(
1 + TmU (s)

)
(1.79)

By incorporating (1.79) and ζ̄ ′′′L (s) = 0 into (1.77), the loop gain is expressed as

TmL(s) = TmU (s)
1

1 + (1 + TmU )
ZoU (s)

ZL(s)

(1.80)

The performance of load-coupled converters can be investigated using the equa-
tions (1.73), (1.74), (1.76), and (1.80). Once the load impedance ZL(s) is available,
the performance of the load-coupled converter is predicted by analyzing these equa-
tions. Procedures and outcomes of such analyses will be given in the next chapter.
The results of this section are summarized in Table 1.1 for easy referencing.

EXAMPLE 1.3 Performance of Load-Coupled Boost Converter

PWM converters are frequently employed in a cascaded structure for an efficient
power conversion. For such cases, an intermediate line filter stage is usually em-
ployed between the converters. This example illustrates the performance of a current-
mode controlled boost converter coupled with a buck converter through a line filter
stage. As shown in Fig. 1.16(a), the boost converter provides a 46 V dc for the buck
converter. The buck converter then draws a 2 A current from the boost converter
via the line filter stage. The boost converter sees the combination of the line filter
and buck converter as a load subsystem.

Figure 1.16(b) shows the load impedance ZL(s) seen by the output of the boost
converter. Details about the load impedance will be given in the next chapter.
Figures 1.16(c) through 1.16(e) illustrate the audio-susceptibility, output impedance,
and loop gain of the load-coupled boost converter, in comparison with those of the
converter directly connected to a 2 A current sink, the uncoupled boost converter.

The performance of the load-coupled converter significantly differs from that of
the uncoupled converter. Even so, the performance of the load-coupled converter
can be closely predicted by applying the graphical analysis to (1.73), (1.74), (1.76),
and (1.80). In the next chapter, we will employ the graphical analysis to uncover
the behavior of the load-coupled converter.
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Table 1.1 Performance of Load-Coupled Converter

Performance expression
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ZoU (s)
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ZoU (s)
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1 +
z̄′o(s)
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Output impedance definition
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oZ ¢

Source-Coupled Converters

We utilize the EET to study the performance of the converters powered by a non-
ideal voltage source. The converter supported by a non-ideal source but connected
to a current sink is referred to as the source-coupled converter. Figure 1.17(a) is
the small-signal block diagram of the source-coupled converter, where the source
impedance Zs(s) is considered as an extra element. The small-signal block diagram
is modified to Fig. 1.17(b) for the EET application.
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Figure 1.16 Performance of load-coupled and uncoupled boost converters. (a) Boost
converter feeding buck converter via filter stage. (b) Load impedance. (c) Audio-susceptibility.
(d) Output impedance. (e) Loop gain.
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Figure 1.17 Small-signal block diagrams of PWM converter connected to source impedance.
(a) Original block diagram. (b) Modified block diagram for EET application.

Using the alternative EET expression in (1.68), the audio-susceptibility is deter-
mined as

AuS(s) =
v̂o(s)

v̂s(s)Zs 6=0 ûinj=0 ı̂o=0

= AuU (s)

1 +
Zs(s)

ζ̄ ′s(s)

1 +
Zs(s)

z̄′s(s)

(1.81)

where AuU (s) is the audio-susceptibility of the converter connected to an ideal
voltage source, or the uncoupled converter. The null driving point impedance ζ̄ ′s(s) =
vT (s)/iT (s) v̂o=0 becomes infinite for the following reasons.
i) The condition v̂o(s) = 0 with v̂s(s) 6= 0 implies the input signal path is opened.
ii) This condition is identical to iT (s) = 0 which in turn makes ζ̄ ′s(s) =∞.

On the other hand, the driving point impedance z̄′s(s) = vT (s)/iT (s)v̂s=o is the input
impedance of the uncoupled converter: z̄′s(s) = ZiU (s). The audio-susceptibility is
then expressed as

AuS(s) = AuU (s)
1

1 +
Zs(s)

ZiU (s)

(1.82)
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The output impedance the converter is given by

ZoS(s) =
v̂o(s)

ı̂o(s) Zs 6=0 ûinj=0 v̂s=0

= ZoU (s)

1 +
Zs(s)

ζ̄ ′′s (s)

1 +
Zs(s)

z̄′′s (s)

(1.83)

The evaluation of the null driving point impedance ζ̄ ′′s (s) = vT (s)/iT (s) v̂o=0 needs
a special attention. The condition v̂o(s) = 0 with ı̂o(s) 6= 0 indicates that the output
port of the converter is shorted. When the output is shorted, the feedback from the
output voltage is disabled. Accordingly, the null driving point impedance ζ̄ ′′s (s) is
the input impedance of the uncoupled converter, evaluated under the condition that
the output port is shorted and the voltage feedback is broken. This input impedance
is denoted as Z ′i(s). The driving point impedance z̄′′s (s) = vT /iT ı̂o=o is the input
impedance of the uncoupled converter: z̄′′s (s) = ZiU (s). The output impedance is
then determined as

ZoS(s) = ZoU (s)

1 +
Zs(s)

Z ′i(s)

1 +
Zs(s)

ZiU (s)

(1.84)

The loop gain of the source-coupled converter is expressed as

TmS(s) = − ûy(s)

ûx(s)Zs 6=0 v̂s=0 ı̂o=0

= TmU (s)

1 +
Zs(s)

ζ̄ ′′′s (s)

1 +
Zs(s)

z̄′′′s (s)

(1.85)

The null driving point impedance ζ̄ ′′′s (s) = vT (s)/iT (s) ûy=0 is identified as follows.
The condition ûy(s) = 0 with ı̂o(s) = 0, which is identical to the case v̂o(s) = 0
with ı̂o(s) = 0, does not imply a short circuit situation at the output port. Instead,
it indicates that the output is nullified, v̂o(s) = 0, by exciting the converter with a
specially-selected {ûx(s) , iT (s)} pair, while the output voltage feedback is active.
Accordingly, the null driving point impedance ζ̄ ′′′s (s) = vT (s)/iT (s) ûy=0 is inter-
preted as the input impedance of the converter, determined when the feedback loop
is closed but the output voltage is nullified, v̂o(s) = 0. This closed-loop null driving
point impedance is denoted as Z ′′i (s).

The driving point impedance z̄′′′s (s) = vT (s)/iT (s) ûx=0 is interpreted as the
input impedance of the converter under the open-loop condition, because ûx(s) = 0
indicates the output voltage feedback is disabled. This open-loop driving point
impedance is represented by Z ′′′i (s). The loop gain of the source-coupled converter
is expressed as

TmS(s) = TmU (s)

1 +
Zs(s)

Z ′′i (s)

1 +
Zs(s)

Z ′′′i (s)

(1.86)
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Figure 1.18 Performance of source-coupled and uncoupled boost converters. (a) Output
impedance. (b) Loop gain.

The graphical analysis method can be applied to the equations of (1.82), (1.84), and
(1.86), to investigate the closed-loop performance of the source-coupled converter.
This topic will be covered in the next chapter. Table 1.2 highlights the results of this
section, along with the illustration of the various input impedances of the uncoupled
converter, appearing in the transfer functions of the source-coupled converter. The
evaluation of these input impedances will also be discussed in the next chapter.

Performance of Source-Coupled Boost Converter EXAMPLE 1.4

This example demonstrates the performance of a source-coupled boost converter.
Shown in Fig. 1.18 are the output impedance and loop gain of the boost converter
powered by a practical voltage source with a finite output impedance. The converter
performance is compared with that of the uncoupled converter. The source-coupled
converter shows significant changes. In the next chapter, we will closely investigate
the behavior of the source-coupled converter.
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Table 1.2 Performance of Source-Coupled Converter

Performance expression

sv̂

( )vF s-

oUZ

mUT

iUZ

0s

o
uU

s Z

v
A

v =
=
ˆ
ˆ ov

+

-

ˆ oı̂ sv̂

( )vF s-

oSZ

mST

iSZ

0

ˆ
ˆ

s

o
uS

s Z

v
A

v ¹
=

sZ

ov

+

-

ˆ oı̂

Uncoupled converter Source-coupled converter

AuS(s) = AuU (s)
1

1 +
Zs(s)

ZiU (s)

ZoS(s) = ZoU (s)

1 +
Zs(s)

Z ′i(s)

1 +
Zs(s)

ZiU (s)

TmS(s) = TmU (s)

1 +
Zs(s)

Z ′′i (s)

1 +
Zs(s)

Z ′′′i (s)

Input impedance definition

(s)vF-

sv̂

iZ ¢

: open-loop output-shorted input impedanceiZ ¢

( )vF s-

sv̂

iZ ¢¢

0ov

+
=
-

ˆ

: output-nullified input impedanceiZ ¢¢

( )vF s-

sv̂

iZ ¢¢¢

: open-loop input impedanceiZ ¢¢¢

Source/Load-Coupled Converters

Discussions of the previous sections are extended to the converters combined with
both the practical load and non-ideal source. For this purpose, the results of the
earlier 2-EET can be adopted. For example, the loop gain of the converter with both
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the load impedance ZL(s) and source impedance Zs(s) is obtained through the two
sequential adoptions of EET. The loop gain with ZL(s) is given by

TmL(s) = TmU (s)
1

1 +
(
1 + TmU (s)

)ZoU (s)

ZL(s)

(1.87)

by the first EET adoption. When the converter is further connected by a non-ideal
source with Zs(s), the second EET of (1.86) is adopted to yield

TmC(s) =

TmU (s)
1

1 +
(
1 + TmU (s)

)ZoU (s)

ZL(s)


 1 +

Zs(s)

Z ′′i (s)

1 +
Zs(s)

Z ′′′i (s)

 (1.88)

where the subscript C in TmC(s) indicates that the converter is fully coupled with
both ZL(s) and Zs(s). Here, Z ′′i (s) and Z ′′′i (s) are evaluated under the condition
that the load impedance ZL(s) is present. Although the expression of the loop gain
is very involved, the analysis will be facilitated when the graphical analysis method is
employed. The above procedure is also applicable to the other performance metrics.

The results of this section will be used in the next chapter to investigate the
performance of converters coupled with both real source and load subsystems.

1.3.3 EET Adapted to Feedback-Controlled Systems

In the previous sections, we employed the EET to account for the impacts of an
impedance element which was not considered in the initial analysis. We now modify
the EET into an alternative format which greatly simplifies the analysis of complex
feedback-controlled systems. The modified EET will be used later to evaluate the
input impedance of closed-loop controlled converters, whose knowledge is critically
needed for the analysis of dc power conversion systems.

The input impedance analysis using the conventional techniques is too complicate
to provide any useful data. The modified EET, known as Middlebrook’s feedback
theorem, greatly expedites the analysis and provides valuable information about
the input impedance. We first present Middlebrook’s feedback theorem and later
illustrate its application to the input impedance analysis of closed-loop controlled
converters.

EET for Feedback-Controlled Systems

Figure 1.19 shows a feedback-controlled system. The system has two input variables,
ui1(s) and ui2(s), and two output variables, uo1(s) and uo2(s). The output variable
uo2(s) is multiplied by the feedback gain A(s) and the resulting signal is employed
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1iu 1ou

2ou2iu

( )A s

Figure 1.19 Two-output feedback controlled system.

as the input variable ui2(s). The system thus constitutes a two-output feedback-
controlled system.

The relationships between the input and output variables are written as

uo1(s) = a11ui1(s) + a12ui2(s)

uo2(s) = a21ui1(s) + a22ui2(s) (1.89)
ui2(s) = A(s)uo2(s)

By solving the three equations, the transfer gain from ui1(s) to uo1(s) is determined
as

H(s) =
uo1(s)

ui1(s)
= a11

1 +

(
−a11a22 − a12a21

a11

)
A(s)

1 + (−a22)A(s)
(1.90)

Referring to (1.89), the coefficient a11 is interpreted as

a11 =
uo1(s)

ui1(s) ui2=Auo2=0

⇒ a11 =
uo1(s)

ui1(s) A=0

≡ H0(s) (1.91)

where H0(s) represents the transfer gain, evaluated with the condition that the feed-
back gain is reduced to zero. From (1.89), the coefficient −a22 is evaluated as

−a22 = −uo2(s)

ui2(s) ui1=0

≡ ā(s) (1.92)

where ā(s) denotes the (negative) forward gain of the system evaluated withui1(s) =
0.

By solving (1.89) under the condition uo1(s) = 0, the following relation yields

−uo2(s)

ui2(s) uo1=0

= −a11a22 − a12a21
a11

≡ ᾱ(s) (1.93)

The transfer function ᾱ(s) is referred to as the (negative) null forward gain, deter-
mined with uo1(s) = 0.
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Figure 1.20 Illustration of Ho(s), ā(s), and ᾱ(s).

From the above discussions, the transfer gain from ui1(s) to uo1(s) is expressed
as

H(s) =
uo1(s)

ui1(s)
= H0(s)

1 +A(s)ᾱ(s)

1 +A(s)ā(s)
(1.94)

The transfer functions H0(s), ā(s), and ᾱ(s) are pictorially illustrated in Fig. 1.20.

Middlebrook’s Feedback Theorem

The EET is further transformed into another format. The transfer gain expression
(1.94) is rearranged into an alternative form

H(s) = H0(s)
1 +A(s)ᾱ(s)

1 +A(s)ā(s)
= H0(s)

A(s)ᾱ(s)

A(s)ā(s)

1 +
1

A(s)ᾱ(s)

1 +
1

A(s)ā(s)

= H0(s)
ᾱ(s)

ā(s)

1 +
1

A(s)ᾱ(s)

1 +
1

A(s)ā(s)

(1.95)

When the expression (1.95) is evaluated with the conditionA(s) =∞, it follows that

H(s)A=∞ = H0(s)
ᾱ(s)

ā(s)
≡ H∞(s) (1.96)

Accordingly, the leading transfer function in (1.95) is identified as the transfer gain
assessed under the condition that the feedback gain is infinite. The EET in (1.95) is
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Figure 1.21 Loop gain of two-output feedback-controlled system

now written as

H(s) = H∞(s)

1 +
1

A(s)ᾱ(s)

1 +
1

A(s)ā(s)

(1.97)

where H∞(s) is the transfer gain evaluated with A(s) =∞.
The expression (1.97) is further modified into

H(s) = H∞(s)

1 +
1

A(s)ᾱ(s)

1 +
1

A(s)ā(s)

= H∞(s)
1

1 +
1

A(s)ā(s)

+H∞(s)

1

A(s)ᾱ(s)

1 +
1

A(s)ā(s)

= H∞(s)
A(s)ā(s)

1 +A(s)ā(s)
+H∞(s)

ā(s)

ᾱ(s)

1

1 +A(s)ā(s)
(1.98)

By evaluating (1.98) with the condition A(s) = 0

H(s)A=0 = H∞(s)
ā(s)

ᾱ(s)
≡ H0(s) (1.99)

the leading transfer function of the second term in (1.98) is found as the open-loop
transfer gain, evaluated with A(s) = 0.

The termA(s)ā(s) in (1.98) has a very special implication. TheA(s)ā(s) product

A(s)ā(s) =
ui2(s)

uo2(s)
(−)

uo2(s)

ui2(s)
≡ Tm(s) (1.100)



i
i

i
i

i
i

i
i

1.3 Coupled Converters and Middlebrook’s Extra Element Theorem 39

1iu
1ou

2iu

( )A s

Figure 1.22 Single-output feedback-controlled system

is the loop gain Tm(s) associated with the feedback path,† evaluate with ui1(s) = 0.
Figure 1.21 is the illustration of the loop gain expression of (1.100).

The final modification of (1.98) is given by

H(s) =
uo1(s)

ui1(s)
= H∞(s)

Tm(s)

1 + Tm(s)
+H0(s)

1

1 + Tm(s)
(1.101)

This EET is formulated by R.D. Middlebrook and known as Middlebrook’s feedback
theorem. The transfer functions appearing in the feedback theorem have the following
implications.

1) H∞(s) is the transfer gain evaluated under the condition that the gain of feedback
block is infinite, A(s) =∞. When a normal operation is presumed in Fig. 1.19
with A(s) = ∞, the output variable uo2(s) should be zero, in order to force
the output of the feedback block, ui2(s), to have a finite value. This indicates
that H∞(s) is the transfer gain, determined under the condition that the output
variable uo2(s) is nullified. The evaluation of H∞(s) becomes straightforward
when the output-variable nullifying condition is exploited.

2) H0(s) is the transfer gain evaluated with A(s) = 0. This transfer gain can
readily be assessed by opening the feedback loop linked to A(s).

3) Tm(s) = A(s)ā(s) is the loop gain associated with the feedback path. The loop
gain is usually controlled by the feedback gain A(s) to have a desired structure.
Thus, the loop gain characteristics are commonly known in advance. Further
details about the loop gain will be given in the next chapter.

The feedback theorem offers a very powerful alternative approach to analyzing
feedback-controlled systems. The use of the feedback theorem is illustrated in the
next two examples.

†The loop gain was defined as the negative gain product of the feedback path.
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EXAMPLE 1.5 Feedback Theorem for Single-Output Feedback System

Figure 1.22 shows a single-output feedback-controlled system, where the sole out-
put variable uo1(s) is used as the feedback signal. For this system, H∞(s) =
uo1(s)/ui1(s)A=∞ is zero, because uo1(s) must be zero in order to produce a fi-
nite ui2(s) with the condition A(s) = ∞. Thus, the expression (1.101) reduces
to

H(s) =
uo1(s)

ui1(s)
=

H0(s)

1 + Tm(s)
(1.102)

which is the familiar closed-loop transfer gain expression for the single-output sys-
tem.

EXAMPLE 1.6 Input Impedance of Uncoupled Converter

This example illustrates the use of the feedback theorem to analyze the input
impedance of uncoupled converters. Figure 1.23 is the block diagram of the un-
coupled converter, modified for the input impedance analysis. Application of the
feedback theorem to Fig. 1.23 yields †

1

ZiU (s)
=
iT (s)

vT (s)
=

1

Z′′i (s)

TmU (s)

1 + TmU (s)
+

1

Z′′′i (s)

1

1 + TmU (s)
(1.103)

where Z′′i (s) is the input impedance evaluated with the output voltage nullified and
Z′′′i (s) is the open-loop input impedance of the uncoupled converter. The loop gain
TmU (s) is defined with vT (s) = 0.

The above equation is approximated as

ZiU (s) ≈

 Z′′i (s) : for frequencies where |TmU | � 1

Z′′′i (s) : for frequencies where |TmU | � 1
(1.104)

to predict the asymptotic behavior of the input impedance. The borderline of the
approximation is the 0 dB crossover frequency of the loop gain TmU (s). Thus, the
input impedance follows the output-nullified input impedance, Z′′i (s), up to the
loop gain crossover frequency and tracks the open-loop input impedance, Z′′′i (s),
thereafter.

The previous two examples are very simple applications of Middlebrook’s feed-
back theorem. The true value of the theorem lies in the analysis of the feedback
amplifiers and other closed-loop controlled system. Extensive application examples
of the theorem are given in [3].

†The expression is written for the inverse of the input impedance, or input admittance, because the input
variable of a converter is the voltage source vT (s) and the output variable is the current flow iT (s).
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Figure 1.23 Evaluation of input impedance of uncoupled converter.

1.4 CHAPTER SUMMARY

For general dc power conversion applications, individual converters should be de-
signed, fabricated, and tested, as a standalone module at the absence of any knowledge
about their source and load subsystems. Under this circumstance, two major chal-
lenges exist in the design and analysis of dc-to-dc converters. First, the control
design should be executed in the manner that does not call for the source and load
impedances while offering good performance for individual converters. The second
task is the performance evaluation of the converters integrated with the source and
load subsystems whose impedance characteristics are only known afterwards.

To cope with uncertainties in the source and load subsystems, the concept of the
uncoupled converter was used. The uncoupled converter is defined as an isolated
converter, powered by an ideal voltage source and loaded with current sink. Then,
the control design for uncoupled converters is formulated in order to offer good
performance when merged with the practical source and load subsystems.

We revealed that the control design for uncoupled converters is the same as the
control design intended for a resistive load. This assures that the conventional control
design for a resistive load is a correct design approach even though the converter is
not connected to a resistor. Furthermore, we demonstrated that the control design
is practically not affected by the load impedance, and therefore the standard control
design procedures, established for a resistive load in Part I of this book, can be
universally applied for all cases.

Middlebrook’s extra element theorem (EET) is employed as an instrumental tool to
deal with the task of analyzing converters coupled with source and load subsystems.
By considering the source impedance and load impedance as the extra elements, the
equations of the EET are adopted. The performance of coupled converters is then
expressed as the combinations of transfer functions of uncoupled converters, source
impedance, and load impedance. The outcomes of this study are summarized in
Tables 1.1 and 1.2. This chapter also introduced Middlebrook’s feedback theorem,
which will be later used in evaluating the input impedance of coupled and uncoupled
converters. The next chapter presents comprehensive dynamic analyses of converters
coupled with practical source and load subsystem.
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